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Abstract

Detailedunderstandingof the couplingbetweenfluidflowand soliddeformation inporous
media is crucial for the development biomedical devices and novel energy technologies re-
lating to a wide range of geological and biological processes. Well established models based
on poroelasticity theory exist for describing coupled fluid-solid mechanics. However, these
models are not adapted to describe systems with multiple fluid phases or “hybrid-scale” sys-
tems containing both solid-free regions and porous matrices. To address this problem, we
present a novel computational fluid dynamics approach based on a unique set of volume-
averagedpartial differential equations that asymptotically approach theNavier-StokesVolume-
of-Fluid equations in solid-free-regions and Biot’s Poroelasticity Theory in porous regions.
Unlike existingmultiscale multiphase solvers, it canmatch analytical predictions of capillary,
relative permeability, and gravitational effects at both the pore and Darcy scales. Through
careful consideration of interfacial dynamics and extensive benchmarking, we show that the
resulting model accurately captures the strong two-way coupling that is often exhibited be-
tween multiple fluids and deformable porous media during processes such as swelling, com-
pression, cracking, and fracturing. The versatility of the approach is illustrated through stud-
ies that 1) quantified the effects ofmicroporosity on sedimentary rock permeability, 2) identi-
fied the governing non-dimensional parameters that predict capillary and viscous fracturing
in porous media, 3) characterised the effects of cracking on hydraulic fracture formation,
and 4) described wave absorption and propagation in poroelastic coastal barriers. The ap-
proach’s open-source numerical implementation “hybridBiotInterFoam”, effectively marks
the extension of computational fluid dynamics simulation packages into deformable, multi-
phase, multiscale porous systems.
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1
Introduction

Fluid flow in deformable porous media is a ubiquitous phenomenon with impor-

tant implications in many energy and environmental technologies including geologic CO2

sequestration, soil bioremediation, water treatment, enhanced biochemical production, nu-

clear waste disposal, and fuel cell design (Bächer &Gekle, 2019; Bock et al., 2010; Cunning-
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ham et al., 2003;Räss et al., 2018; Towner, 1987). It also underlies iconic geophysical features

atmany scales, from coastal, riparian, and volcanic landforms to fractures in subsurface reser-

voirs, cracks in clay soils, and bubbles in soft sediments.

Whereas single-phase flow in porous media is relatively well understood from atomistic to

continuum scales, the dynamics of systems containingmultiple phases remain challenging to

describe at all scales (Gray et al., 2015; Li et al., 2018). Multiphase flow involves strong feed-

back between inertial, viscous, capillary, and interfacial forces (Meakin&Tartakovsky, 2009;

Datta et al., 2014). This coupling is intrinsically multiscale, as inertial and viscous forces

dominate in large pores or fractures while capillary forces and interfacial energetics dominate

within smaller porous ormicroporous structures. The complex linkage betweenmicroscopic

geometric heterogeneities andmacroscopic processes makes it necessary to consider multiple

scales across porous media in order to create truly predictive models, from the scale of mi-

croscopic interfaces (∼ µm), to pore networks and lab columns (∼cm), all the way up to the

field scale (∼km).

An important and largely unresolved challenge in the areas outlined above is the difficulty

of describing situations where multiple fluids interacts with a deformable porous material.

For example, when modeling flow through biofilms or membranes it is imperative to under-

stand how fluid flow behaves inside the microporous medium (in pores with length scales of

∼ 10−6m)while simultaneously understanding how the deformation of thismedium affects

the overall flow field (often controlled bymuch larger flow paths with length scales on the or-

der of∼ 10−2m) (Bottero et al., 2010). Similarly, the propagation of flow-driven fractures in

porous materials and the propagation of waves in coastal barriers involve feedbacks between

flow and mechanics in systems with characteristics pore widths that differ by three or more

2



orders of magnitude. In this dissertation, we develop a framework capable of representing

multiphase flow and solid mechanics in systems with two characteristic pore length scales, as

required to simulate many of the aforementioned phenomena (see Figs. 1.1 and 1.2).

Figure 1.1: Conceptual representation of a multiscale deformable porous medium and its related processes. The porous
domain is shown in the lower half (orange), the free‐fluid domain is shown in the upper half (blue), two immiscible fluids
(left and right) are shown in different shades of blue and are separated by an interface (black). θ is the contact angle.

The starting point for our study is based on the present ample understanding of multi-

phase flow dynamics within and around static porous materials, from viscous and capillary

fingering (Ferer et al., 2004; Lenormand & Zarcone, 1989; Lenormand et al., 1988) to tem-

perature and surface tension driven flows (Shih &Megaridis, 1996), all the way to turbulent

multiphase flows (Colombo&Fairweather, 2015; Soulaine&Quintard, 2014). This knowl-

edge, in conjunction with numerical techniques such as the Lattice BoltzmannMethod, the

Finite VolumeMethod, Homogenization Theory, and Averaging Theory, forms the basis of
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fast and accurate models that are routinely applied to help design and improve hydrocarbon

production (Burrus et al., 1991;Mehmani &Tchelepi, 2019), CO2 sequestration (Hassan&

Jiang, 2012), and even nuclear reactors (Tentner et al., 2008). However, the study of multi-

phase flow across different scales remains limited as shown by the absence of well-established

approaches to describe how bubbles or waves propagate into an unsaturated porousmedium

or how a multiphase fluid mixture is pushed out of a porous medium into open space.

A similar situation pertains with regard to computational models that couple fluid flow

and solidmechanics. Theoretical andnumerical approaches basedonBiot’sTheory of poroe-

lasticity (Biot, 1941), Terzaghi’s effective stress principle (Terzaghi, 1943), andMixture The-

ory (Siddique et al., 2017) have been successful at modeling systems with flow in deformable

porous media including arteries, biofilms, boreholes, hydrocarbon reservoirs, seismic sys-

tems, membranes, soils, swelling clays, and fractures (Auton&MacMinn, 2017; Barry et al.,

1997; Jha & Juanes, 2014; Lo et al., 2005, 2002; MacMinn et al., 2016; Mathias et al., 2017;

Santillán et al., 2017). However, asmentioned above, we still have very little understanding of

how flow-induced deformation of these solid materials affects the macroscopic flow around

them (and thus their boundary conditions) or howfluid-fluid interfaces behavewhen pushed

against a soft porous medium and vice-versa.

Three major approaches have been proposed to resolve the challenge posed by fluid flow

in porous media containing both solid-free regions and microporous domains (hereafter re-

ferred to as multiscale systems). The most straightforward of these involves performing di-

rect numerical simulations (DNS) throughout the entiremultiscale domain, bothwithin and

outside the porous medium (Breugem & Boersma, 2005; Hahn et al., 2002; Krafczyk et al.,

2015). Although rigorous, this technique is impractical in situations with a large difference
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in length scales between the largest and smallest pores, where it requires exceedingly fine grids

and tremendous computational resources.

To save time and resources, other studies have relied on hybrid DNS-Darcy approaches,

where fluid and solidmechanics within a porousmedium aremodeled as averaged quantities

throughDarcy’s law, pore-networkmodels, or Biot theory (Weishaupt et al., 2019; Ehrhardt,

2010). One such approach relies on the use of the Beavers-Joseph (BJ) boundary condition to

couple fluid flow in solid-free domains (simulated using the Navier-Stokes equations) and in

microporous domains (simulated using Darcy’s law) for single phase flow and static porous

media (Beavers & Joseph, 1967a; Fetzer et al., 2016). Recent studies have extended this BJ

approach to allowmultiphase flow in the solid-free domain (Baber et al., 2016) or to include

the effects of poroelasticity within the porous medium (Lacis et al., 2017; Zampogna et al.,

2019). However, to the best of our knowledge, no BJ based technique has yet been devel-

oped to couple solid mechanics with multiphase flow simultaneously within the solid-free

and porous domains.

The Darcy-Brinkman (DB) approach –also referred to as Darcy-Brinkman-Stokes (DBS)

equations– (Brinkman, 1947) presents a well-known alternative to the BJ interfacematching

technique. These equations arise from volume averaging the Stokes (or Navier-Stokes) equa-

tions in a control volume that contains both fluids and solids (Vafai & Tien, 1981; Hsu &

Cheng, 1990; Bousquet-Melou et al., 2002; Goyeau et al., 2003). It consists in a Stokes-like

momentum equation that is weighted by porosity and contains an additional drag force term

that describes the mutual friction between the fluids and solids within said control volume.

Unlike standard continuum scale equations for flow and transport in porous media such

as Darcy’s law, the DB equation remains valid in solid-free regions (see Figure 1.2A) where
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the drag force term vanishes and the DB equation turns into the Stokes (or Navier-Stokes)

equation. In porous regions (see Figure 1.2C), in contrast, viscous dissipation effects are

negligible compared with the drag force exerted onto the pore walls and the DBmomentum

equation tends asymptotically towards Darcy’s law (Tam, 1969; Whitaker, 1986a; Auriault,

2009). Therefore, the “micro-continuum” DB equation has the ability to simultaneously

solve flow problems through porous regions and solid-free regions (Neale & Nader, 1974),

paving the path to hybrid scale modeling (see Figure 1.2B). In the case of single phase flow, it

is known to be analogous (in fact, formally equivalent) to the previouslymentioned andwell-

established Beavers-Joseph boundary conditions (Beavers & Joseph, 1967b; Neale & Nader,

1974).

Figure 1.2: Schematic representations of a porous medium with two characteristic pore sizes depending on the scale of
resolution: (a) full pore scale (Navier‐Stokes), (b) intermediate or hybrid scale, and (c) full continuum scale (Darcy). Our
objective is to derive a framework that can describe multiphase flow at all three scales described in the figure based on
a single set of equations resolved throughout the entire system.
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The resulting so-called “micro-continuum” approach has been extensively used to solve

single phase flow through staticmultiscale porous media. A prime example is the modelling

of fluid flow in three-dimensional images of rock samples that contain unresolved sub-voxel

porosity (Knackstedt et al., 2006; Apourvari & Arns, 2014; Scheibe et al., 2015; Soulaine

et al., 2016; Kang et al., 2019; Singh, 2019). It also has been used to simulate dissolution

wormholingduring acid stimulation in cores byupdating theweightingporosityfield through

geochemical reactions (Liu et al., 1997;Golfier et al., 2002; Soulaine&Tchelepi, 2016;Tomin

&Voskov, 2018). Moreover, it has been shown thatwhenever low-porosity low-permeability

porous regions are present, the velocity within these regions drops to near zero, such that the

micro-continuum DB framework can be used as a penalized approach to map a solid phase

onto a Cartesian grid with a no-slip boundary at the solid surface (Angot et al., 1999; Khadra

et al., 2000; Soulaine &Tchelepi, 2016). Therefore, this approach can be used tomove fluid-

solid interfaces efficiently in a Cartesian grid without a re-meshing strategy. For example,

Soulaine et al. (2017) used a micro-continuum framework to predict the dissolution kinet-

ics of a calcite crystal and successfully benchmarked their model against state-of-the-art pore

scale dissolution solvers with evolving fluid-solid interfaces (Molins et al., 2019).

In the present thesis, we propose the Multiphase Darcy-Brinkman-Biot (DBB) approach,

a fully coupled multiscale model for two-phase flow in deformable porous media based on

the micro-continuum approach, rooted in elementary physical principles and rigorously de-

rived using the method of the volume averaging (S. Whitaker, 1999). We show that there

exists a single set of partial differential equations that can be applied in pore, continuum,

and hybrid scale representation of multiphase flow in porous media. Particular attention is

paid to the derivation of gravity and capillary effects in the porous domain for both fluid
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and solid mechanics. The resulting two-phase micro-continuum framework is validated us-

ing an extensive series of test cases where reference solutions exist. We verify that the multi-

scale solver converges to the standardDarcy/Biot scale solutions (Buckley-Leverett, capillary-

gravity equilibrium, drainage in a heterogeneous reservoir, Terzaghi consolidation tests, clay

swelling experiments) when used at the continuum scale in porous media and to the two-

phase Navier-Stokes solutions (droplet on a flat surface, capillary rise, drainage with film de-

position, two-phase flow in a complex porous structure) when used at the pore scale. The

fully implemented numerical model, along with the aforementioned verification and tuto-

rial cases, is provided as an accompanying open-source solver: hybridBiotInterFoam.

This thesis is organized as follows. Chapter 2 introduces the concept of volume averaging

and describes the derivation of the governing equations for coupled fluid and solid mechan-

ics. Chapter 3 explains the numerical implementation and algorithm development for the

coupled mass and momentum equations and introduces the resulting open-source solver.

Then, Chapters 4 to 6 focus on verifying and showcasing the model’s ability to capture cou-

pled fluid-solid mechanics in multiscale porous media. This was done in an incremental

manner, where Chapter 4 focuses on single phase flow through deformable porous media,

Chapter 5 on multiphase flow through static porous media, and Chapter 6 on multiphase

flow through deformable porous media. After that, Chapter 7 uses the developed model to

identify the governingnon-dimensional parameters that predict capillary and viscous fractur-

ing in porous media. Lastly, Chapter 8 presents a slight detour through the use of Machine

Learning approaches to predict and simulate stochastic clogging process in heterogeneous

porousmedia. Chapter 9 concludes with a summary of this thesis and a discussion on future

work.
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The difference between screwing around and science is

writing it down.

Adam Savage

2
Derivation of the PDEs for Multiphase

Flow in Deformable Porous Media

In this chapter, we present the complete derivation of the micro-continuum equations

for multiphase flow in static and deformable porous media. This Computational Fluid Dy-
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namics (CFD) approach allows for simulation of two-phase flow in hybrid systems contain-

ing solid-free regions and porous matrices, as illustrated schematically in Fig. 2.1. Our ap-

proach consists of a unique set of five volume-averaged partial differential equations that

asymptotically approach the Navier-Stokes Volume-of-Fluid equations in solid-free-regions

and multiphase Biot Theory in porous regions. This set of equations consists of 1) a solid

mass conservation equation, 2) a fluid mass conservation equation, 3) a fluid saturation con-

servation equation, 4) a fluid momentum conservation equation, and 5) a solid momentum

conservation equation. This work is adapted from Carrillo & Bourg (2019), Carrillo et al.

(2020), and Carrillo & Bourg (2021b).

2.1 Volume Averaging

We start by introducing the concept of volume averaging. This technique forms the basis of

the micro-continuum equations, as it allows the classical mass andmomentum conservation

equations to account for the coexistence of solids (s), wetting fluids (w), and non-wetting

fluids (n) within a given control volume. This method is well suited for use in conjunction

with the Finite VolumeMethod (Patankar, 1980), as the latter method’s numerical grid pro-

vides an intuitive and straightforward numerical interpretation of what we will define as the

averaging volume (V ). We start by defining the volume averaging operator:

βi =
1

V

∫
Vi

βidV (2.1)

where βi is a function defined in each phase’s respective volume Vi (i = w, n, s) . We also
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Figure 2.1: Conceptual representation of the Multiphase DBB modelling framework. The porous domain is shown in
the lower half (orange), the free‐fluid domain is shown in the upper half (blue), the two immiscible fluids (left and right)
are shown in different shades of blue and are separated by an interface (black), θ is the contact angle, and ϕf is the
porosity. REV is the “Representative Elementary Volume” over which all conservation equations are averaged. Note that
the stated relation between the averaging volume’s length scaleLV and the porous length scaleLP is required for the
creation of a REV.

define the phase averaging operator:

β
i

i =
1

Vi

∫
Vi

βidV (2.2)

Each fluid’s (f ) phase averaged variables are thus intrinsically related by the porosity ϕf =

Vf/V = (Vw + Vn)/V and saturation αi = Vi/Vf fields (where Vf ≡ Vw + Vn) such that

βi = ϕfαiβ
i

i (i = w, n). For phase-averaged solid variables, the equivalent relationship

only involves the solid fraction ϕs, such that: βs = ϕsβ
s

s. We note that ϕf + ϕs = 1 and

α1+α2 = 1; thus knowledge of one of the ϕ orα variables always leads to knowledge of the
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other. Volume averaging then allows for the definition of several regionswithin a hybrid-scale

numerical simulation:

ϕf =


1, in solid-free regions

]0; 1[ , in porous regions
(2.3)

αw =


0, in regions saturated with non wetting fluid

]0; 1[ , in unsaturated regions

1, in regions saturated with wetting fluid

(2.4)

The application of an averaging transformation to mass and momentum conservation

equations will result in variables and equations that are weighted differently in each of the

regions identified in Eqns. 2.3-2.4. However, the averaging of differential equations is not

straightforward, which is why we introduce the following spatial averaging theorems for vol-

umes containing three distinct phases (Howes &Whitaker, 1985; S. Whitaker, 1999):

∂βi

∂t
=

∂βi

∂t
− 1

V

∫
Ai,j

βivi,j · ni,jdA− 1

V

∫
Ai,k

βivi,k · ni,kdA (2.5)

∇βi = ∇βi +
1

V

∫
Ai,j

βini,jdA+
1

V

∫
Ai,k

βini,kdA (2.6)

∇ · βi = ∇βi +
1

V

∫
Ai,j

βi · ni,jdA+
1

V

∫
Ai,k

βi·ni,kdA (2.7)

whereAi,j represents the interfacial area between phase i and j,ni,j is a vector normal to the
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interface and oriented toward phase j, and vi,j is the velocity of the interface. The notation

for symbols with subscript pair i, k is equivalent, and the symbols i, j, k represent any com-

bination of the solid, wetting, and non-wetting phases. The surface integrals in Eqns. 2.5 -

2.7 are crucial components of the following derivations as they convert the interfacial condi-

tions at the fluid-fluid and fluid-solid interfaces into body forces within the averaged partial

differential equations.

The following properties will also become useful, which follow directly from the basic

averaging theorem in a system with a single fluid and solid phase (Whitaker, 1986a).

1

V

∫
Ai,s

nf,sdA = −∇ϕf (2.8)

However, if the integral is over a fluid-solid surface in a multiphase system, the previous

equation needs to be modified to account for the fact that fluid phase i only partially covers

the full solid surface,

1

V

∫
Ai,s

ni,sdA = −αi∇ϕf (2.9)

The original property can then be easily recovered by integrating over the solid surface

spanned by both fluid phases:

1

V

∫
Ai,s

ni,sdA+
1

V

∫
Aj,s

nj,sdA = −αi∇ϕf − αj∇ϕf = −∇ϕf (2.10)
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Figure 2.2: Distribution of the fluid phases in (a) the continuous physical domain, (b) a discrete Eulerian grid. In this
figure, the subscripts g and l represent gaseous and liquid phases, respectively.

2.2 SolidMass Conservation Equation

We start the derivation of our solid mass conservation equation with an elementary mass

conservation equation:

∂ρs
∂t

+∇ · (ρsU s) = 0 (2.11)

whereρs andU s are the solid’s density and velocity, respectively. We then apply the averaging
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operatorwithin a volume containing the solid (s) and two immiscible fluidphases (w, n) such

that:

∂ρs
∂t

+∇ · (ρsU s) =

∂ρs
∂t

− 1

V

∫
As,w

ρsU s · ns,wdA− 1

V

∫
As,n

ρsU s · ns,ndA

+∇ ·
(
ρsU s

)
+

1

V

∫
As,w

ρsU s · ns,wdA+
1

V

∫
As,n

ρsU s · ns,ndA (2.12)

It then becomes clear that the integral operators that arise from the transient term cancel

with the ones that arise from the convection term such that:

∂ρs
∂t

+∇ ·
(
ρsU s

)
= 0 (2.13)

We can now decompose the equation in terms of the intrinsic phase averages,

∂ϕsρss
∂t

+∇ ·
(
ϕsρ

s
s U

s
s

)
= 0 (2.14)

Assuming the solid density is constant and given that intrinsic phase averages of constants

are equal to themselves, we can state the following:

∂ϕs

∂t
+∇ ·

(
ϕsU

s
s

)
= 0 (2.15)

This finalizes the derivation of the solid mass conservation equation.
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2.3 FluidMass Conservation Equation

Just as before, we start with a mass conservation equation for a given fluid i (i = w, n),

∂ρi
∂t

+∇ · (ρiU i) = 0 (2.16)

where ρi and U i are the fluid’s density and velocity, respectively. We then follow the same

procedure outlined in the Section 2.2 (also shown in Appendix D.1) in order to obtain the

following equation:

∂ρi
∂t

+∇ ·
(
ρiU i

)
= 0 (2.17)

Just as before, we want to decompose the averaged terms into their intrinsically averaged

components. This time, however, we do so by noting that βi = ϕfαiβ
i

i.

∂ϕfαiρii
∂t

+∇ ·
(
ϕfαiρiiU

i
i

)
= 0 (2.18)

Assuming the fluid density is constant and given that intrinsic phase averages of constants

are equal to themselves, we can show that:

∂ϕfαi

∂t
+∇ ·

(
ϕfαiU

i
i

)
= 0 (2.19)

This step completes the derivation of the mass conservation equation for a given fluid “i”.

Wenow sum together themass conservation equations for bothwetting (w) andnon-wetting
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(n) fluids, such that:

∂ϕfαw

∂t
+

∂ϕfαn

∂t
+∇ ·

(
ϕfαwU

w
w

)
+∇ ·

(
ϕfαnU

n
n

)
= (2.20)

∂ϕf (αw + αn)

∂t
+∇ ·

(
ϕfαwU

w
w + ϕfαnU

n
n

)
= 0 (2.21)

The result is the single-field mass conservation equation in terms of the porosity and the

single-field fluid velocityU f = ϕf

[
αwU

w

w + αnU
n

n

]
,

∂ϕf

∂t
+∇ ·U f = 0 (2.22)

where the phrase “single-field” refers to averaged variables that depend on the properties of

both fluids. This concludes the derivation of the volume averaged fluid mass conservation

equation.

2.4 Saturation Convection Equation

We start this derivationwith the volume-averagedmass conservation equation for thewetting

fluid phase (Equation 2.19 in Section 2.3):

∂ϕfαw

∂t
+∇ ·

(
ϕfαwU

w
w

)
= 0 (2.23)

This equation can be used to advect the saturation function αw. However, for practical

reasons that will be made clear later, we wish to express this as a function of the single-field
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velocityU f (rather thanUw
w). We start bymultiplying by 1 and by noting that 1 = αw+αn,

∂ϕfαw

∂t
+∇ ·

(
ϕfαw(αw + αn)U

w
w

)
= 0 (2.24)

∂ϕfαw

∂t
+∇ ·

(
ϕfαwαwU

w
w

)
+∇ ·

(
ϕfαwαnU

w
w

)
= 0 (2.25)

We then add ϕfαwαnU
n
n to one side and subtract it from the other (essentially adding

zero to the equation),

∂ϕfαw

∂t
+∇ ·

(
αw

(
ϕfαwU

w
w+ϕfαnU

n
n

))
+∇ ·

(
ϕfαwαn

(
Uw

w −Un
n

))
= 0 (2.26)

∂ϕfαw

∂t
+∇ · (αwU f ) +∇ ·

(
ϕfαwαn

(
Uw

w −Un
n

))
= 0 (2.27)

Finally, we define the relative velocityU r = Uw
w − Un

n in order to obtain the following

saturation equation:

∂ϕfαw

∂t
+∇ · (αwU f ) +∇ · (ϕfαwαnU r) = 0 (2.28)

The definition of the relative velocity is domain dependent (it is defined differently in

porous and solid-free regions, (Carrillo et al., 2020)). Its full analytical derivation and de-

scription is provided in Section 2.6.2.
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2.5 FluidMomentumConservation Equation

We start with the classical form of the momentum conservation equation for a single-phase

fluid i,

∂ρiU i

∂t
+∇ · (ρiU iU i) = −∇pi + ρig +∇ · Si (2.29)

where ρi is the density, U i is the velocity, pi is the fluid pressure, g is gravity, and Si =

µi

(
∇U i + (∇U i)

T
)
is the viscous stress tensor for a Newtonian fluid. For simplicity, we

neglect the inertial and convective terms for the time being:

0 = −∇pi + ρig +∇ · Si (2.30)

Applying the averaging theorems in a volume containing an additional immiscible fluid

(j) and a solid (s), we obtain:

0 = −∇pi −
1

V

∫
Ai,j

pini,jdA− 1

V

∫
Ai,s

pini,kdA+ ρig +∇ · Si+

1

V

∫
Ai,j

Si · ni,jdA+
1

V

∫
Ai,s

Si·ni,sdA (2.31)

For improved readability, we now group the terms integrating over the fluid-fluid interface

into a single termDi,j =
1
V

∫
Ai,j

ni,j · (−Ipi + Si)dA. Furthermore, we now convert the
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volume averages into their intrinsic phase averages such that:

0 = −∇(ϕfαip
i

i
) + ϕfαiρig +∇ · Si −

1

V

∫
Ai,s

pini,kdA+
1

V

∫
Ai,s

Si·ni,sdA+Di,j

(2.32)

Before we continue, we note that we can separate the pressure into its intrinsic phase aver-

age and deviation terms (Whitaker, 2013), such that pi = pii + p̃i,

0 = −∇(ϕfαip
i

i
) + ϕfαiρig +∇ · Si −

1

V

∫
Ai,s

p̂iini,kdA

− 1

V

∫
Ai,s

p̂ini,kdA +
1

V

∫
Ai,s

Si·ni,sdA+Di,j (2.33)

Assuming that the intrinsic phase averages are constant along the integration surface and

by expanding the terms inside the gradient operators we get the following,

0 = −ϕf∇(αip
i
i)− αip

i
i∇ϕf + ϕfαiρig +∇ · Si−

pii
1

V

∫
Ai,s

ni,kdA+
1

V

∫
Ai,s

ni,j · (−I p̃i + Si) dA+Di,j (2.34)

We now apply the averaging theorem that relates the surface integral of the unit normal to

the porosity gradient (Equation 2.10),
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0 = −ϕf∇(αip
i
i)− αip

i
i∇ϕf + ϕfαiρig +∇ · Si

+ αip
i
i∇ϕf +

1

V

∫
Ai,s

ni,j · (−I p̃i + Si) dA+Di,j (2.35)

We then cancel out like-terms and group the remaining integrals into a single term that rep-

resents the total momentum exchange across the solid-fluid interfaceDi,s =
1
V

∫
Ai,s

ni,j·

(−I p̃i + Si) dA. The result is the averaged fluid momentum equation over a volume con-

taining another immiscible fluid and a solid,

0 = −ϕf∇(αip
i
i) + ϕfαiρig +∇ · Si +Di,s +Di,j (2.36)

Adding themomentum equations for awetting (w) and a non-wetting (n) fluidwe obtain

the single-field averaged momentum conservation equation in terms of U f and the single-

field pressure p = αwp
w
w + αnp

n
n.

0 = −ϕf∇p+ ϕfρfg +∇ · S +Dw,s +Dn,s +Dw,n +Dn,w (2.37)

whereS = µf (∇U f+(∇U f )
T ) is the averaged single-field viscous stress tensor (Appendix

D.2), µf is the arithmetic average of each fluid’s viscosity µf = αwµw + αnµn, and ρf is the

arithmetic average of each fluid’s density ρf = αwρw + αnρn. If necessary, we can now add

the averaged single-field material derivative (Appendix D.3) to obtain,
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∂ρfU f

∂t
+∇ ·

(
ρf
ϕf

U fU f

)
= −ϕf∇p+ ϕfρfg +∇ · S+

Dw,s +Dn,s +Dw,n +Dn,w (2.38)

Finally, for this equation to be valid in both a porous medium and within a solid-free do-

main, we now need closure for theDi,j interaction terms. This was done in Carrillo et al.

(2020) and described in the following section. The results is shown here:

Dw,s +Dn,s +Dw,n +Dn,w = −ϕfµk
−1
(
U f −U s

)
+ ϕfF c,1 + ϕfF c,2 (2.39)

where µk−1 is the single-field mobility of the fluids (i.e. a representation for drag) and F c

represents the capillary forces arising from fluid-fluid interfacial dynamics. The analytical

representations of these terms are derived in the next section (Section 2.6) and summarized in

Section 2.13. The result is the complete single-filed fluidmomentum equation for two-phase

flow in deformable porous media (i.e. a re-formulated VOF approach for flow in dynamic

porous media):

∂ρfU f

∂t
+∇ ·

(
ρf
ϕf

UfUf

)
= −ϕf∇p+ ϕfρfg +∇ · S−

ϕfµk
−1
(
U f −U s

)
+ ϕfF c,1 + ϕfF c,2 (2.40)

The equation presented above tend towards the standard VOF approach in solid-free re-
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gions (where the drag term becomes negligible) and towards themultiphase Darcy equations

in porous regions. The latter can be explained by the fact that the viscous stress tensor∇ ·S

becomes negligible under the scale-separation assumption, inertial terms become negligible

under the assumption of low Reynold’s number flow in the porous medium, and the F c

terms are set to fit standard multiphase Darcy’s law (Whitaker, 1986a; Carrillo et al., 2020).

Therefore, Eqn. 2.40≈


∂ρfUf

∂t
+∇ ·

(
ρfU fU f

)
= −∇p+∇ · S + ρfg + F c,1 in solid-free regions(

U f −U s

)
= − k

µ
(∇p− ρfg − F c,1 − F c,2) in porous regions

(2.41)

2.6 Closure of the Fluids’ Multiscale Interaction Terms

To form the multiscale momentum equation, we express the sum of the average shear stress

at the fluid-solid and fluid-fluid interfaces as the sum of two independent terms, an Eulerian

drag force−ϕfµk
−1
(
U f −U s

)
and a capillary forceF c:

Dw,s +Dn,s +Dw,n +Dn,w = −ϕfµk
−1
(
U f −U s

)
+ ϕfF c (2.42)

these so called “multi-scale parameters” reflect sub-grid scale variables and processes such as

the location of the fluid-fluid interface and the hydrodynamic impact of the porous micro-

structure. They have different meanings and different formulations depending on whether

their averaging volume contains solid material or not. Therefore we will present distinct
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derivations of these termswith thepurpose ofmatching the solutionof the two-phaseNavier-

Stokes equations in solid-free regions and of the two-phase Darcy equations in porous re-

gions.

2.6.1 Matching the Volume-of-FluidModel in Solid-Free Regions

In CFD, the Volume of Fluid (VOF) method (Hirt &Nichols, 1981) is a standard approach

to track the interfacemovement of two immiscible fluids in a fixedEulerian grid. In it, a phase

indicator representing the volume of fluid in each grid block is used to track the distribution

of the fluid phases in a computational domain as illustrated in the upper part of Figure 2.2B.

This phase indicator has the same form as the saturation fieldαw defined before, whereαw =

1 in cells saturated by the wetting phase and αw = 0 in cells that contain the non-wetting

phase only. Note that 0 < αw < 1 in cells that contain the immiscible interface between

both fluids.

In standard VOF approaches, the computational cells do not contain solid (ϕf = 1). In

these cases, the relative velocityU r is used as a compression term to force the fluid-fluid inter-

face to be as sharp as possible (Rusche, 2002). This compression velocity acts in the direction

normal to the interface. In the VOF framework, the normal to the fluid-fluid interface is

computed using the gradient of the saturation. Rusche (2002) proposes a relative velocity

oriented in the direction normal to interface with a value based on the maximummagnitude

ofU f :

U r = Cαmax (|U f |)nw,n, (2.43)

where Cα is a model parameter used to control the compression of the interface and nw,n
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is the mean normal vector. For low values of Cα, the interface diffuses. For higher values,

the interface is sharper, but excessive values are known to introduce parasitic velocities and

lead to unphysical solutions. In practice, Cα is often chosen between 0 and 4. The mean

normal vector nw,n is computed by using the gradient of the phase indicator function αw.

The relation between these two vectors can be obtained by applying Eq. 2.6 to the liquid

phase indicator function1l (a function equal to 1 inVw and 0 elsewhere) in solid-free regions

such that,

∇αw = − 1

V

∫
Aw,n

1lnw,ndA. (2.44)

Therefore,

nw,n = − ∇αw

|∇αw|
, (2.45)

is a unit vector defined at the cell centers that describes the mean normal to the fluid-fluid

interface in a control volume.

Another consequence of the absence of solid in the VOF equations is that the forces de-

scribing the shear stresses of the fluids onto the solid surface are null, henceDw,s = Dn,s =

0. Therefore, the Darcy term in the momentum equation vanishes:

ϕfµk
−1
(
U f −U s

)
= 0. (2.46)

The integration of the shear boundary condition at the fluid-fluid interface, yields a re-

lationship between the mutual shear between the two fluids and the surface integral of the
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surface tension effects:

Dw,n +Dn,w = ϕfF c =
1

V

∫
Alg

nlg · γκdA. (2.47)

This equation cannot be used directly, because the terms under the volume integral require

knowledge of the location and curvature of the fluid-fluid interface within a grid block. This

information is unknown in a grid-based formulation for which all the physical variables and

forces are averaged on control volumes. In the VOF method, the curvature of the interface

κ is approximated by a mean interface curvature κ. Brackbill et al. (1992) assumes that the

mean curvature of the interface can be approximated by calculating the divergence of the

mean normal vector, κ = ∇ · nw,n. Because κ and γ are constant within a control volume,

they can be extracted from the integral in Eq. 2.47 to obtain (after applying Eq. 2.44) the

so-called Continuum Surface Force (CSF) formulation (Brackbill et al., 1992):

F c = ϕ−1
f γ∇ ·

(
∇αw

|∇αw|

)
∇αw. (2.48)

2.6.2 Matching the Standard Two-Phase DarcyModel in Porous Regions

In this subsection, we recall the formulation of the standard two-phase Darcy model that

is classically used to describe two-phase flow in porous media at the continuum scale. The

model can be derived by applying the volume averaging operators on a REV of the porous

structure (Whitaker, 1986b). Unlike the present micro-continuum model, the two-phase

Darcy model is a two-field model, meaning that instead of one velocity field describing the

flow, there are two velocities (U i with i = w, n) with separate pressure fields (pi with i =
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w, n).

The incompressible, immiscible two-phaseDarcymodel in static porousmedia consists of

a saturation equation for the wetting phase,

∂ϕαw

∂t
+∇ ·Uw = 0, (2.49)

a mass balance equation,

∇ ·U i = 0, (2.50)

and two momentum balance equations, one for each phase,

U i = ϕfαiU
i
i = −k0kr,i

µi

(
∇pi

i − ρig
)
, i = w, n,

= −Mi

(
∇pi

i − ρig
)
, i = w, n. (2.51)

These can also be written as,

0 = −∇pi
i + ρig −M−1

i U i, i = w, n, (2.52)

where k0 is the absolute permeability of the porous structure, kr,w and kr,n are the relative

permeabilities with respect to each fluid (classically represented here as functions of wetting

fluid saturation; more complex formulations exist that account for viscous coupling between

the two fluids or for the Klinkenberg effect in the non-wetting (often gaseous) phase (Picchi

& Battiato, 2018)), andMi =
k0kr,i
µi

are the fluid mobilities. Equations 2.52 arise from fur-

ther simplification of the volume averaged Stokes equations, Eq. 2.36, where the drag forces
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are combined and described as a singleDarcy term. Moreover,Whitaker (1986a) showed that

the viscous dissipative term,∇·Si is negligible in comparison to the drag forceswhenever the

system’smacroscopic length scale is significantly larger than the length scale of that averaging

volume. This feature is a fundamental aspect of the multiscale framework described above

because it means that even though the viscous dissipative term is retained in the single-field

momentum equation, it naturally vanishes when the computational cells contain solid con-

tent. This allows the continuity of stresses between porous and solid-free domains (Neale &

Nader, 1974).

Because it involves four equations and five unknown variables, the two-phaseDarcymodel

is complemented by the definition of macroscopic capillary pressure pc, which provides an

additional relationship between the two averaged pressure fields:

pc (αw) =
(
pg

g − pl
l
)
. (2.53)

This equation has been theoretically derived through homogenization techniques and is as-

sumed to be independent of sub-volume fluid properties. (Whitaker, 1986b; Torres, 1987).

As the two-phase Darcy model explicitly represents the two phase-averaged velocities, it

can be used to derive an expression for the relative velocityU r in the porous region. Before

going through the derivation, we note that the application of the gradient operator to the

definition of the single-field pressure p, along with the definition of capillary pressure, Eq.
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2.53, results in:

∇pw
w = ∇p−∇ (αnpc) ,

∇pn
n = ∇p+∇ (αwpc) . (2.54)

We can then obtain an analytical form forU r by using the multi-phase Darcy equations

presented above (Eqn. 2.51):

U r =
(
Uw

w −Un
n

)
,

= − Mw

ϕfαw

(∇pww − ρwg) +
Mn

ϕαn

(∇pnn − ρng) ,

= ϕ−1
f

[
−Mw

αw

∇pww +
Mn

αn

∇pnn +

(
ρw

Mw

αw

− ρn
Mn

αn

)
g

]
,

= ϕ−1
f

 −
(

Mw

αw
− Mn

αn

)
∇p+

(
ρw

Mw

αw
− ρn

Mn

αn

)
g+

Mw

αw
∇ (αnpc) +

Mn

αn
∇ (αwpc)

 ,

= ϕf
−1

 − (Mwα
−1
w −Mnα

−1
n )∇p+ (ρwMwα

−1
w − ρwMnα

−1
n ) g+

(Mwαnα
−1
w +Mnαwα

−1
n )∇pc − (Mwα

−1
w −Mnα

−1
n ) pc∇αw

 .

(2.55)

A two-phaseDarcymodel for the single-field velocityU f is then formed to derive the con-

tinuum scale formulation of the drag force µk−1U f and capillary forceF c. This is achieved

by summing both phase velocities, Eq. 2.51, and using the pressure gradient relationship, Eq.
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2.54. We obtain:

U f = Uw +Un,

= −Mn∇pnn −Mw∇pww + (ρnMn + ρwMw) g, (2.56)

= − (Mn +Mw)∇p+ (ρnMn + ρwMw) g + [Mw∇ (αnpc)−Mn∇ (αwpc)] ,

The previous equation can be recast into:

0 = −∇p+ ρMg −M−1U f +M−1 [Mw∇ (αnpc)−Mn∇ (αwpc)] , (2.57)

whereM = Mw+Mn is the total mobility and ρM = (ρwMw + ρnMn) / (Mw +Mn) is a

mobility-weighted average fluid density. This single-field two-phase Darcy equationmatches

the two-phase micro-continuum momentum equation, Eq. 2.37, if this equation’s drag co-

efficient and the capillary force equal

µk−1 = M−1 = k−1
0

(
µw

kr,w
+

µn

kr,n

)−1

, (2.58)

and

F c = M−1 [Mw∇ (αnpc)−Mn∇ (αwpc)] ,

=

[
M−1 (Mwαn −Mnαw)

(
∂pc
∂αw

)
− pc

]
∇αw, (2.59)

respectively. Here, the single-field relative permeability, Eq. 2.58, is a harmonic average of

the two-phase mobilities, in agreement with the proposal of Wang & Beckermann (1993)
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and Soulaine et al. (2019).

Finally, we note that in Eq. 2.57, the single-field fluid density ρM in the buoyant term is a

weighted average based on the fluidmobilities, or more exactly, the fractional flow functions,

MiM
−1. This is a classic concept in multiphase flow in porous media. As shown in Carrillo

et al. (2020) a strictly equivalent solution can be derived where ρM is replaced by ρf in Eq.

2.57 and the capillary force expression is replaced by:

F c = F c,1 + F c,2 = M−1 (Mwαn −Mnαw) [(ρw − ρn)g +∇pc]− pc∇αw (2.60)

this is the expression shown in Sections 2.5 and 2.13.

2.7 MomentumConservation Equation for a Linear Elastic Solid

We start with the differential form of the force balance for a solid body in terms of the dis-

placement vector ds. Fundamentally, it consists of an elastic stress tensor (σ) balanced by a

Terzaghi effective stress tensor (τ ) (Carrillo & Bourg, 2019; Jasak &Weller, 2000).

∂2 (ρsds)

∂t2
−∇ · σ = ∇ · τ + ρsg (2.61)

whereτ is a functionof the confiningpressure (Pconf ), thefluidpressure (p), and the swelling

pressure (pswell) such that: τ = P conf − Ip − Ipswell. Applying the volume averaging

operators for a solid (s) in contact with a wetting (w) and non-wetting fluid (n) we obtain:

∂2 (ρsds)

∂t2
−∇ · σ = ∇ · τ + ρsg (2.62)
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Expanding the first term from the left we get:

=
∂2
(
ρsds

)
∂t2

− ∂

∂t

1

V

∫
As,w

ρsdsU s · ns,wdA− 1

V

∫
As,w

∂ (ρsds)

∂t
U s · ns,wdA

− ∂

∂t

1

V

∫
As,n

ρsdsU s · ns,ndA− 1

V

∫
As,n

∂ (ρsds)

∂t
U s · ns,ndA

(2.63)

Given that linear elasticity theory only deals with infinitesimal deformations, we can safely

assume that the velocity of the solid-fluid interface (U s) is very close to zero. This approxi-

mation yields:

∂2 (ρsds)

∂t2
=

∂2
(
ρsds

)
∂t2

=
∂2
(
ϕsρsd

s
s

)
∂t2

(2.64)

We now continue by expanding the stress terms,

∂2
(
ϕsρsd

s
s

)
∂t2

−∇ · σ − 1

V

∫
As,n

σ·ns,wdA− 1

V

∫
As,n

σ·ns,ndA

−∇ · τ − 1

V

∫
As,w

τ ·ns,wdA− 1

V

∫
As,n

τ ·ns,ndA = 0

(2.65)

Just as before, we can write the Terzaghi stress tensor (i.e. the fluid pressure) as the sum of

its intrinsic phase average and its sub-volume deviations. Furthermore, we also expand the
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averaged Terzaghi term into its phase averaged form,

∂2
(
ϕsρsd

s
s

)
∂t2

−∇ · σ − 1

V

∫
As,w

σ · ns,idA− 1

V

∫
As,n

σ·ns,ndA−∇ · (ϕsτ
s)

− 1

V

∫
As,w

(τ s + τ̃ ) ·ns,wdA− 1

V

∫
As,n

(τ s + τ̃ )·ns,ndA = 0

(2.66)

Assuming that the intrinsic phase averages of the stress tensors are constant along the in-

tegration surfaces and using the geometric relation between said surfaces and the porosity

gradient (Equation 2.10), we obtain:

∂2
(
ϕsρsd

s
s

)
∂t2

−∇ · σ −∇ · (ϕsτ
s) + τ s · ∇ϕs−

1

V

∫
As,w

(σ + τ̃ ) · ns,wdA− 1

V

∫
As,n

(σ + τ̃ )·ns,ndA = 0 (2.67)

This expression can be simplified into the following by the use of the chain rule,

∂2
(
ϕsρsd

s
s

)
∂t2

−∇ · σ − ϕs∇ · τ s−

1

V

∫
As,w

(σ + τ̃ ) · ns,wdA− 1

V

∫
As,n

(σ + τ̃ )·ns,ndA = 0 (2.68)

Finally we represent the integral terms as two separate interaction terms defined asBs,i =
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1
V

∫
As,i

(σ + τ̃ ) · ns,idA:

∂2
(
ϕsρsd

s
s

)
∂t2

−∇ · σ = ϕs∇ · τ s + ϕsρsg +Bs,w +Bs,n (2.69)

In the case of a linear elastic solid the stress tensor is a function of the two lame coefficients

(µs, λs) and takes the following form:

σ = ϕsµs∇ds
s + ϕsµs

(
∇ds

s

)T
+ ϕsλstr(∇ds

s)I (2.70)

2.8 MomentumConservation Equation for a Viscoplastic Solid

The elementary momentum conservation equation for a plastic solid can be written as:

∂ρsU s

∂t
+∇ · (ρsU sU s)−∇ · σ = ∇ · τ + ρsg (2.71)

whereσ represents the plastic viscous stress tensor andτ is theTerzaghi effective stress tensor.

Note how in this case, the solid is essentially a viscous fluid, albeit a non-Newtonian one.

Fortunately, the averaging procedure for each term within this equation has already been

shown in Sections 2.5 and 2.7. Putting it all together, the averaged momentum equation for

a plastic solid is as follows:

∂ϕsρsU
s

s

∂t
+∇ ·

(
ϕsρsU

s

sU
s

s

)
−∇ · σ = ϕs∇ · τ s + ϕsρsg +Bs,w +Bs,n (2.72)

For a viscoplastic solid the stress tensor is a function of the effective plastic viscosity (µeff
s )
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and takes the following form:

σ = ϕs µ
eff
s

(
∇U

s

s +
(
∇U

s

s

)T − 2

3
∇ ·
(
U

s

sI
))

(2.73)

2.9 General SolidMomentumConservation Equation

If we assume low solid velocities (Res ≲ 1) we can reasonably neglect the inertial terms and

time derivatives in both the elastic and plastic solid momentum equations (Eqns. 2.72 and

2.69 in order to arrive to a general equation for solid mechanics:

−∇ · σ = ϕs∇ · τ s + ϕsρsg +Bs,w +Bs,n (2.74)

where σs
s is either the solid’s elastic or viscoplastic stress tensor. The only thing left to do is

to close theBs,i interaction terms. This was done in Carrillo et al. (2020) and shown in the

next section (Section 2.10), where:

Bs,w +Bs,n = ϕfµk
−1
(
U f −U s

)
− ϕfF c,1 + ϕsF c,2 (2.75)

here, µk−1 is the single-field mobility of the fluids (i.e. a representation for drag) and F c,i

represents the capillary forces arising from fluid-fluid interfacial dynamics within the porous

medium. Putting everything together we now obtain the averaged momentum equation for

a solid containing two immiscible phases:

−∇ · σ = ϕs∇ · τ s + ϕsρsg + ϕfµk
−1
(
U f −U s

)
− ϕfF c,1 + ϕsF c,2 (2.76)
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2.10 Closure of the Solid’s Multiscale Interaction Terms

Just as we did for the fluid equations in Section 2.6, we will assume that the sum of the av-

eraged stresses at the solid-fluid interface can be expressed as the sum of two independent

terms: a drag force that captures shear-induced momentum exchange (Bdrag) and a capil-

lary force originating from capillary pressure jumps across the integrated solid surfaceswithin

the porous media (Bcap).

Bdrag +Bcap = Bs,w +Bs,n (2.77)

We now seek closure of these two coupling terms. By conservation of momentum, we

know that any drag-induced momentum lost by the fluid must be gained by the solid. Thus,

by Eqn. 2.40,

Bdrag = ϕfµk
−1
(
U f −U s

)
(2.78)

Closure of the capillarity-induced interaction termBcap is obtained by adding the solid

and fluid momentum equations (Eqns. 2.40 and 2.74) within the porous medium at low

Reynold numbers and low permeability, which yields:

0 = −ϕf∇p+ ϕfρfg − ϕfµk
−1
(
U f −U s

)
+ ϕfF c,1 + ϕfF c,2

+

−∇ · σ = ϕs∇ · τ s + ϕsρsg + ϕfµk
−1
(
U f −U s

)
+Bcap

36



=

−∇ · σ = ϕs∇ · τ s − ϕf∇p+ (ϕsρs + ϕfρf ) g + ϕfF c,1 + ϕfF c,2 +Bcap (2.79)

In multiphase porous systems with incompressible grains and no swelling pressure (i.e.

∇ · τ s = −∇p), Biot Theory states that ∇ · σ = ∇p − ρ∗g + pc∇αw, where ρ∗ =

(ϕsρs + ϕfρf ) (Jha & Juanes, 2014; Kim et al., 2013). This expression is satisfied by the

previous equation in the absence of capillary forces (Carrillo & Bourg, 2019). In multiphase

systems, however, it imposes the following equality,

Bcap = −(ϕfF c,1 + ϕfF c,2 + pc∇αw) (2.80)

Given thatF c,1 = M−1 (Mwαn −Mnαw) (∇pc + (ρw − ρn) g) and thatF c,2 = −pc∇αw

(see Eqns. 2.89 and 2.90), the previous equation can be rearranged to obtain:

Bcap = −ϕfF c,1 + ϕsF c,2 (2.81)

Equation 2.81 gives closure to the last coupling parameter andmarks the end of this deriva-

tion. The result is the solid momentum conservation equation shown in Sections 2.9 and

2.13.
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2.11 Interfacial Conditions between Solid-Free Regions and Porous Re-

gions

One of themost important features allowed by the equations presented above is the existence

of an interface between solid-free and microporous domains. Although the creation of a

rigorous un-averaged description of this interface is still an open question, we approximate a

solution to it by guaranteeing its necessary components within our fluid and solid averaged

equations.

An accurate description of fluid behavior at the interface requires three components: 1)

mass conservation across the interface, 2) continuity of stresses across the interface, and 3)

an interfacial wettability condition. Components 1 and 2 are intrinsically fulfilled by our

solver due to its single-field formulation for velocity and pressure within the fluid conser-

vation equations (Eqns. 2.83 and 2.85). As shown in Neale & Nader (1974) and Carrillo

& Bourg (2019) these two components are necessary and sufficient to model single-phase

flow within a multiscale system. Furthermore, these conditions have also been used for clo-

sure whenmodellingmultiphase flow inmoving porousmedia (Lacis et al., 2017; Zampogna

et al., 2019; Carrillo et al., 2020). The required wettability condition at the porous interface

(Component 3) is included in ourmodel through the implementation of a penalized contact

angle condition (Eqn. 2.91) following the steps outlined inHorgue et al. (2014) andCarrillo

et al. (2020).

The complementary solid conditions at the porous interface are very similar: 1) solid mass

conservation across the interface, 2) continuity of fluid-induced stresses across the interface,

and 3) a discontinuity of solid stresses at the interface. Just as before, the first two conditions
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are intrinsically fulfilled through the use of a single set of mass andmomentum conservation

equations across both domains and have also been used as closure conditions in previous

studies (Lacis et al., 2017; Zampogna et al., 2019). The third condition is enforced by the use

of volume-averaged solid rheology models that tend towards infinitely deformable materials

in solid-free regions, as shown in Carrillo & Bourg (2019). When volume-averaged, the be-

havior of the solid’s stress tensor is domain dependent (i.e. solid fraction dependent). Thus,

in solid regions, the elasticity and viscosity of the porous medium is determined by standard

averaged rheological properties (the elastic and viscoplastic moduli). Contrastingly, in solid-

free regions, the solid fraction tends to zero and, as such, said properties do aswell. The result

is a stress-free “ghost” solid that does not apply resistance to the porous region, creating the

required stress discontinuity at the porous interface.

Although necessary, these conditions represent but an approximation to the complete de-

scription of fluid and solid mechanics at the porous interface. However, to the best of our

knowledge, there does not exist an alternative set of boundary conditions that can or have

been used to model multiphase flow in multiscale porous media.

2.12 Advection-Diffusion Equation for Tracer Particles

Thederivationof the following advection-diffusion equation for tracer particles flowingwithin

a single fluid follows the same averaging procedure as all the previousmass conservation equa-

tions.

∂
(
ϕfC

i

i,x

)
∂t

+∇
(
C

i

i,xU f

)
−∇ ·

(
ϕf Deff,x∇C

i

i,x

)
= 0 (2.82)
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whereCi

i,x andDeff,x are themolar concentration and effective diffusion coefficient of a given

species x, respectively. A reaction term can readily be added to Eqn. 2.82 to describe reactive

solutes (Soulaine et al., 2017). The expansion of Eqn. 2.82 into multiphase flow is beyond

the scope of our investigation, but can be found inMaes & Soulaine (2019).

2.13 Summary of Equations andMultiscale Parameters

The final set of conservation equations used in this framework now follows. The combi-

nation of these solid and fluid conservation equations leads to a model that tends towards

multiphase Navier-Stokes in solid-free regions and towards Biot Theory in porous regions

(see Appendix D.4).

∂ϕf

∂t
+∇ ·U f = 0 (2.83)

∂ϕfαw

∂t
+∇ · (αwU f ) +∇ · (ϕfαwαnU r) = 0 (2.84)

∂ρfU f

∂t
+∇ ·

(
ρf
ϕf

U fU f

)
= −ϕf∇p+ ϕfρfg +∇ · S−

ϕfµk
−1
(
U f −U s

)
+ ϕfF c,1 + ϕfF c,2 (2.85)

∂ϕs

∂t
+∇ ·

(
ϕsU

s

s

)
= 0 (2.86)
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−∇ · σ = ϕs∇ · τ s + ϕsρsg + ϕfµk
−1
(
U f −U s

)
− ϕfF c,1 + ϕsF c,2 (2.87)

The closed-form expressions of themulti-scale parametersµk−1,U r , andF c,i, which are

defined differently in each region now follow. A full derivation and discussion of these pa-

rameters can be found in Sections 2.6 and 2.10 (Carrillo et al., 2020).

µk−1 =


0 in solid-free regions

k−1
0

(
kr,w
µw

+ kr,n
µn

)−1

in porous regions
(2.88)

F c,1 =


− γ

ϕf
∇ · (nw,n)∇αw in solid-free regions

M−1 (Mwαn −Mnαw) (∇pc + (ρw − ρn) g) in porous regions
(2.89)

F c,2 =


0 in solid-free regions

−pc∇αw in porous regions
(2.90)

nw,n =


∇αw

|∇αw| in solid-free regions

cos (θ)nwall + sin (θ) twall at the interface between solid-free porous regions
(2.91)
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U r =



Cα max (|U f |) ∇αw

|∇αw| in solid-free regions

ϕ−1



− (Mwα
−1
w −Mnα

−1
n )∇p+

(ρwMwα
−1
w − ρwMnα

−1
n ) g+

(Mwαnα
−1
w +Mnαwα

−1
n )∇pc−

(Mwα
−1
w −Mnα

−1
n ) pc∇αw


in porous regions

(2.92)

where γ is the surface tension,Cα is an interface compression parameter (traditionally set to

values between 1-4 in the Volume-of-Fluid method), k0 is the absolute permeability, kr,i are

the fluids’ relative permeabilities,Mi = ki,r/µi are the fluids’ mobilities,M = Mw +Mn

is the single-field mobility, and pc is the average capillary pressure between the two fluids in

a given control volume. The phase-specific parameters can be readily calculated from closed-

form relative permeability and capillary pressuremodels such as the Brooks-Corey (Brooks&

Corey, 1964) and Van Genutchen (van Genuchten, 1980) models. Lastly, θ is the imposed

contact angle at the porous wall, and nwall and twall are the normal and tangential direc-

tions relative to said wall, respectively. For the reader’s convenience, a full implementation of

this model, complete with rheological, relative permeability, and capillary pressure models, is

included within the hybridPorousInterFoam (for static porous media) and hybridBiotInter-

Foam (for deformable porous media) open-source solvers.
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2.14 Conclusion

A complete set of partial differential equations required to model multiphase flow in mul-

tiscale deformable porous media is presented above. In the following chapters, we focus on

the numerical implementation of these equations and their application to a wide range of

different natural and engineered systems. As such, for the rest of this dissertation, whenever

any partial differential equation is mentioned, we will be referring to the ones described in

this chapter. The main model limitations stemming from the assumptions presented in this

chapter are summarized and discussed in Chapter 9.
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List of Symbols

αn Saturation of the non-wetting phase

αw Saturation of the wetting phase

σ Elastic (or plastic) solid stress tensor in the grid-based domain

τ Terzaghi stress tensor in the grid-based domain

Bi,k Drag force exerted by phase k on phase i

ds Solid displacement

Di,k Drag force exerted by phase k on phase i

F c,i Surface tension force in the grid-based domain

g Gravity vector

ni,j Normal vector to the i-j interface in the continuous physical space

nwall Normal vector to the porous surface
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S Single-field fluid viscous stress tensor in the grid-based domain

twall Tangent vector to the porous surface

U f Single-field fluid velocity in the grid-based domain

U r Relative velocity in the grid-based domain

U s Solid velocity in the grid-based domain

vi,j Velocity of the i-j interface in the continuous physical space

ϵ Volumetric strain

γ Interfacial tension

λs Second Lame coefficient

µf Single-field viscosity

µi Viscosity of phase i

µs First Lame coefficient

µeff
s Effective plastic viscocity

U i
i Phase-averaged velocity of phase i in the grid-based domain

U i Superficial velocity of phase i in the grid-based domain

ϕf Porosity field

ϕs Solid fraction field
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ρ∗ Biot density

ρf Single-field fluid density

ρi Density of phase i

θ Surface contact angle

Ai,j Interfacial area between phase i and j

b Biot coefficient

Cα Parameter for the compression velocity model

I Identity matrix

k Apparent permeability

k0 Absolute permeability

kr,i Relative permeability with respect to phase i

M Total mobility

m Mass of fluid per control volume

Mi Mobility of phase i

p Single-field fluid pressure in the grid-based domain

pc Capillary pressure

V Volume of the averaging-volume
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Vi Volume of phase i in the averaging-volume
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Computers are useless. They can only give you answers.

Pablo Picasso

3
Numerical Implementation

Havingrigorouslyderived the governing equations formultiphase flow in deformable

porous media in Chapter 2, we now turn to the task of implementing them into a compu-

tational framework apt for performing numerical simulations. This chapter will provide the

computational tools required to perform all the simulations shown in subsequent chapters.
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Thework presented here is adapted fromCarrillo &Bourg (2019), Carrillo et al. (2020), and

Carrillo & Bourg (2021b).

3.1 Numerical Platform

The implementationof themultiphaseDBBmodelwasdone inOpenFOAM®, a free, open-

source, parallelizable, and widely used computational fluid mechanics platform. This C++

code uses the Finite Volume Method to discretize and solve partial differential equations in

complex 3-D structured and unstructured grids. Its object-oriented structure andmultitude

of supporting libraries allows the user to easily customize each simulation’s setupwith differ-

ent numerical discretization schemes, time-stepping procedures, matrix-solution algorithms,

and supporting physical models. The implementation described below stems directly from

OpenFOAM’s® standard two-phase incompressible flow solver “interFoam”.

3.2 Solution Algorithm

The solution of the governing equations is done in a sequential manner, starting with the

fluid mechanics equations and following with the solid mechanics equations for every time

step. Of particular importance is the handling andmodification of the velocity-pressure cou-

pling required formodeling incompressible fluids in conjunctionwith amoving solidmatrix.

For this step, we based our solution algorithm on the Pressure Implicit Splitting-Operator

(PISO) (Issa, 1986). First, we explicitly solve the fluid saturation equation (Eqn. 2.84) for

αt+1
w through the Multidimensional Universal Limiter of Explicit Solution (MULES) algo-

rithm (Márquez & Fich, 2013). This allows for stable numerical advection of the saturation

field by the application of Flux Corrected Transport Theory (Rudman, 1997). Then, we
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update the boundary values ofU f andU r in addition to the cell-centered values of the per-

meability kt+1, density ρt+1
f , and viscosity µf

t+1 based on the newly calculated saturation

field αt+1
w . The capillary forces F t+1

c,i are also updated accordingly. After that, a preliminary

value of the fluid velocityU ∗
f is calculated by implicitly solving the algebraically discretized

form of the fluid momentum equation used in the Finite VolumeMethod.

apU
∗
f = H

(
U ∗

f

)
+ ρt+1

f g + F t+1
c,i −∇pt (3.1)

whereH
(
U ∗

f

)
contains inertial, convective, viscous, and drag source terms originating from

neighboring cells and ap represents these same terms but at the volume of interest. Note

that the U ∗
f field does not follow mass conservation. To account for this, we use the fluid

continuity equation (Eqn. 2.83) in conjunction with the previous equation (Eqn. 3.1) to

update the velocity fieldU ∗∗
f and calculate a preliminary mass-conservative pressure field p∗.

In other words, these fields must satisfy,

U ∗∗
f =

1

ap

(
H
(
U ∗

f

)
+ ρt+1

f g + F t+1
c,i −∇p∗

)
(3.2)

∇ ·U ∗∗
f = − ∂ϕf

∂t
(3.3)

These equations can be recast into a single coupled equation which is then used to implic-

itly solve for pressure. This step can be done through several generalized matrix solvers that

are standard in OpenFOAM®.

∇ ·
(

1

ap

(
H
(
U ∗

f

)
+ ρt+1

f g + F t+1
c,i

))
−∇ ·

(
1

ap
∇p∗

)
= − ∂ϕf

∂t
(3.4)
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After solving for pressure p∗, velocity can be re-calculated from Equation 3.2. This semi-

implicit pressure-velocity correction step is repeated until the desired convergence is reached.

It has been shown that at least two pressure-velocity correction loops are required to ensure

mass conservation (Issa, 1986).

At this pointU t+1
f andpt+1 are set andused as input values for updating the drag andpres-

sure source terms present in the solid mechanics momentum equation (Eqn. 2.87). Then,

in the case of visco-poro-plasticity, said equation is discretized in a similar way as the fluid

momentum equation (Eqn. 2.85) and used to implicitly solve forU t+1
s . In the case of poroe-

lasticity, the solid mechanics equation is solved through the algorithm presented in Jasak &

Weller (2000). Here, the solid’s elastic equation (Eqn. 2.69) is discretized and segregated

into implicit and explicit components, after which it is iteratively solved until convergence

is reached. This segregated method not only guarantees fast convergence but also memory

efficiency. Finally, the updated solid velocity is used to “advect” the solid fraction field ϕs by

solving the mass conservation equation (Eqn. 2.86). At this point the algorithm advances

in time according to the imposed Courant-Friedrichs-Lewy (CFL) number. Further discus-

sion regarding the discretization techniques andmatrix-solution procedures can be found in

Carrillo & Bourg (2019), Carrillo et al. (2020), Carrillo & Bourg (2021b), Jasak (1996), and

Jasak &Weller (2000).

3.3 Open-Source Implementation

The complete set of governing equations and solution algorithms, along with the necessary

rheology, relative permeability, and capillary pressure models (Appendix A and B) were im-

plemented into the solvers hybridPorousInterFoam (for static porous media) and thybridBi-
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otInterFoam (for deformable porousmedia). These solvers, alongwith representative tutorial

cases, automated compilation and running procedures, and all the simulated cases presented

in this dissertation were incorporated into open-source CFD packages of the same names.

OpenFOAM® and our code are free to use under the GNU general public license and can

be found at https://openfoam.org/ and https://github.com/Franjcf (Carrillo, 2020b,a),

respectively.
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In God we trust, all others bring data.

William Edwards Deming

4
Applications to Single-Phase Flow in

Multiscale Deformable Porous Media

In this chapter we apply the equations derived in Chapter 2 and implemented in Chap-

ter 3 tomodel single phase flow through deformable porousmedia. Special emphasis is given
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to the simulation of of swelling clays and their influence on the permeability of sedimen-

tary rocks. The work presented in this chapter represents the first step towards verifying

and showcasing theMultiphase DBBmodel. This chapter is adapted fromCarrillo & Bourg

(2019).

4.1 Introduction

How does the permeability of sedimentary media depend on porosity, mineralogy, fluid

chemistry, and stress history? This question has been a recurrent theme in subsurface hy-

drology for over half a century (Berg, 1970; Bourg & Ajo-Franklin, 2017; Brace, 1980). It

impacts a range of endeavors that shape humanity’s energy landscape including hydrocar-

bon migration and recovery (Alvarado & Manrique, 2010), geothermal energy production

(Barbier, 1997), geologic carbon sequestration (Klaus, 2003), and radioactive waste storage

(Sellin & Leupin, 2014). The last two technologies have the potential to contribute up to

half of the mitigation effort required to stabilize global CO2 emissions (Metz et al., 2005;

Socolow& Pacala, 2004) but require the ability to accurately predict the permeability evolu-

tionof ductile fine-grained sedimentary rocks (shale,mudstone) overmillennial time-scales in

the presence of geochemical and geomechanical disturbances (Bourg & Ajo-Franklin, 2017;

Neuzil, 2013).

A major challenge associated with developing a predictive understanding of flow in fine-

grained sedimentary media is that these structures have two characteristic length scales: a

macroscale defined by the assemblages of coarse grains of quartz, feldspar, or carbonate over

distances of micrometers and a microscale defined by the assemblages of clay minerals (pri-

marily smectite and Illite) over distances of nanometers (Bourg & Ajo-Franklin, 2017). Fig-
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ure 4.1a shows a conceptualmodel of themacroscale structure of sedimentary rocks as amix-

ture of rigid coarse grains, a deformablemicroporous claymatrix, andmacropores (Crawford

et al., 2008; Marion et al., 1992; Revil & Cathles, 1999). This model is consistent with elec-

tron microscopy observations (Nadeev et al., 2013; Nole et al., 2016; Tuller & Or, 2003) as

exemplified in Fig. 4.1b-d (Fiès & Bruand, 1998; Peters, 2009). Experimental data indicate

that permeability in fine-grained soils, sediments, and sedimentary rocks can be highly sensi-

tive to the spatial distribution of the clay matrix (Abichou et al., 2002; Nadeau, 1998).

A second major challenge is that the microporous clay matrix is non-rigid: it can swell

or shrink in response to changes in salinity and deform in response to fluid flow or exter-

nal stresses in a manner that reflects the nanoscale colloidal interactions between negatively-

charged clay particles (Liu, 2013; Madsen & Muller-Vonmoos, 1989; Suzuki et al., 2005;

Teich-McGoldrick et al., 2015). The resulting dynamics of the clay matrix give rise to sig-

nificant couplings between the hydrologic, chemical, and mechanical (HCM) properties of

clayeymedia (Carey et al., 2014; Erol, 1979;Murad&Cushman, 1997). These couplings are

particularly strong if the clay fraction contains significant amounts of smectite (i.e., swelling

clayminerals) and if theporewater containspredominantly sodic salts. In these cases, swelling

by more than 1400 % and swelling pressures up to∼50 MPa have been reported (Karnland

et al., 2007; Norrish, 1954). In short, fundamental predictions of the permeability of fine-

grained sediments and sedimentary rocks require amodel capable of describing coupled fluid

flow in pores with very different sizes (intergranular macropores and clay micropores with

pore widths on the order of micrometers and nanometers, respectively) while also predict-

ing the deformations of the microporous clay matrix induced by flow, external stresses, and

salinity changes (Bourg & Ajo-Franklin, 2017).
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Existing approaches to predicting the hydrology of fine-grained sedimentary media have

focused on addressing either one of the two challenges outlined above, but not both simul-

taneously. Approaches focused on the existence of two length scales have generally used an

“ideal packingmodel” representation of clay-rich sedimentary media as a microporous (clay)

medium embedded within a network of coarse grains (Crawford et al., 2008; Marion et al.,

1992; Revil &Cathles, 1999). On this model, a threshold naturally emerges at a clay mineral

mass fraction of∼1/3 where the microporous clay matrix becomes the load-bearing phase,

in agreement with experimental observations on the core-scale hydrologic and mechanical

properties of sedimentary rocks (Bourg & Tournassat, 2015; Crawford et al., 2008). How-

ever, existing models based on this framework invariably neglect the mechanics of the clay

matrix by assuming either that the clay has a fixed porosity or that it uniformly occupies the

space available within the network of coarse grains. One consequence of this approximation

is that these models do not capture the influence of salinity on the permeability of clayey

media (Kwon et al., 2004; Quirk, 1986).

Conversely, approaches focused on the HCM couplings such as Terzaghi’s consolidation

theory, Biot’s theory of poroelasticity, and Mixture Theory (theories initially developed to

describe clayey media and now widely applied to other deformable porous media including

hydrogels and biological tissues) simplify the governing equations for fluid and solid dynam-

ics into a single macroscopic equation by assuming that both phases are superimposed con-

tinua with negligible inertial forces (Auton &MacMinn, 2017; Barry & Aldis, 1992; Jain &

Juanes, 2009; Santillán et al., 2018; Terzaghi, 1964). This approach results in an implicitly

coupled momentum equation for deformable porous media that can be paired to different

body forces or solid deformation constitutive relations to create system-specific models. A
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Figure 4.1: (a) Conceptual representation of the two key challenges posed by fluid flow in clay‐rich sedimentary rocks.
The structure contains three regions: rigid coarse grains, macropores, and a deformable microporous clay matrix. Fluid
flow (red arrows) occurs primarily in the bulk‐fluid domain, but the boundaries of this domain are influenced by the de‐
formation of the microporous clay domain (black arrows). Figures b‐d are electron microscopy images of clayey media,
specifically (b) a Canadian shale and (c,d) a mixture of clay and sand (denoted by the letters c and s, respectively) associ‐
ated with reductive and expansive clay swelling states (Fiès & Bruand, 1998; Peters, 2009). Coarse grains, microporous
clay, and macropores are shown in gray, orange, and blue in Fig. 4.1a and in light gray, dark gray, and black in Figs. 1b‐d.

drawback of this approach in the context of sedimentary rocks, however, is that it does not

reflect the existence of the two characteristic length scales illustrated in Fig. 4.1 or conse-

quences such as the permeability threshold at a finite clay content noted above.

The advent of Digital Rock Physics (DRP) over the last decade—i.e., the combined use

of X-ray computed tomography (XCT) and computational methods to generate numeri-

cal models of fluid flow in real rocks (Adler et al., 1992; Fredrich, 1999; Mirabolghasemi

et al., 2015; Raeini et al., 2017)—provides a potential route to simultaneously addressing

both challenges outlined above. In the last few years, a handful of DRP studies have ex-

amined rocks with two characteristic length scales including fractured porous rocks, vuggy

media, and clay-rich sedimentary rocks (Keller et al., 2013; Li et al., 2016; Saif et al., 2017). In
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Figure 4.2: Illustration of the three main theoretical frameworks combined in the present study to model fluid flow
in porous media with two characteristic length scales and a deformable microporous matrix: (a) models based on the
Darcy‐Brinkman formulation that describe coupled fluid flow in macropores (clear region) and in a microporous medium
(shaded region) (Ochoa‐Tapia & Whitaker, 1995); (b) boundary methods that simulate flow around moving impermeable
solids (Breugmem & Verzicco, 2013); and (c) poromechanics model of a cylindrical conduit where the fluid and porous
solid are in a single domain (grey) and forces are imposed through boundary conditions (Auton & MacMinn, 2017). Here
Q represents the fluid flow rate, and a(t) and b0 represent the inner and outer radii of the cylinder, respectively.

these studies, the macroscale features (coarse grains, macropores, and microporous regions)

are fully resolved, while the microscale features (i.e., particles and pores within the microp-

orous regions) are below the resolution of the XCT measurements. Many of these studies

used a computational framework based on a pore network model (PNM) with two char-

acteristic length scales (Mehmani & Prodanović, 2014; Mehmani et al., 2013; Prodanović

et al., 2015). Alternatively, at least two used an approach based on computational fluid dy-

namics (CFD)where flow in themacropores andmicroporous regionswere coupled through

slip-flow boundary conditions and volume-averaging based on the Darcy-Brinkman formal-

ism (Bijeljic et al., 2018; Guo et al., 2018). The resulting models demonstrate the possibility

of characterizing porous media with two characteristic length scales as mixtures of three re-

gions (as in Fig. 4.1a) and in coupling fluid flow in the macropores andmicroporous regions

(Golfier et al., 2015; Soulaine et al., 2017). However, these studies all assumed a static porous

medium configuration, a significant limitation in the case of clay-rich media, as noted above.
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Themain contribution of this chapter is the application of the system of differential equa-

tions derived in Chapter 2 to single phase flow in deformable porous media. The model

is parameterized with a focus on viscoplastic clay-rich sedimentary media (Section 4.2) and

validated against experimental results on the properties of these media (Section 4.3). With

proper parameterization, our framework should be applicable to other systems that involve

coupled fluid flow inmacropores and in a deformablemicroporousmatrix such as soils (Mu-

rad & Cushman, 1996; Vo & Heys, 2011), hydrogels (Datta et al., 2016), biological tissues

(Dai et al., 2014), and fractures (Noiriel et al., 2007). To illustrate this versatility, we also for-

mulate and apply the model for cases where the microporous matrix undergoes elastic rather

than viscoplastic deformation (Section 4.4).

4.2 Parametrization to PorousMedia: Na-Smectite Clay

As noted in the introduction, a key challenge in subsurface hydrology is the strong influence

of clayminerals on fluid flow in sedimentary rocks (Bourg&Ajo-Franklin, 2017). This chal-

lenge is particularly profound in systems that contain smectite clay, a microporous material

whose permeability, swelling pressure, and plastic rheology are highly sensitive to porosity

and aqueous chemistry (Aksu et al., 2015; Mondol et al., 2008; Spearman, 2017). Smectite

is the predominant clay mineral in many unconsolidated sediments, in bentonite (a mixture

of sand and clay used in geotechnical applications), and in soils formed in temperate weath-

ering environments (Abichou et al., 2002; Sposito, 2008). Smectite and Illite clay minerals

constitute roughly half of theworld’s sedimentary rockmass, with Illite being generallymore

abundant on amass basis but both clayminerals being roughly equally important on a surface

area basis. The present section parameterizes the set of equations derived above for systems
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where the microporous matrix consists entirely of smectite by choosing the appropriate per-

meability, salt diffusion, swelling pressure, and rheology models. We focus on conditions

where aqueous chemistry is dominated by sodic salts such as NaCl, where smectite swelling

and rheology have been most extensively characterized. The result is a closed, fully coupled

system of equations.

4.2.1 Parametrization of the Permeability Function

First, we define the permeability of the clay matrix (k), the key variable that determines the

sub-REV-scale momentum interaction between water and clay. For simplicity, we use the

well-known Kozeny-Carman relation:

k (ϕf ) =
1

b t2a2s

ϕ3
f

(1− ϕf )
2 (4.1)

Equation 4.1 describes the permeability of a bundle of capillary tubes of uniform radius

within an impermeable solid, where b is a pore shape factor, t is the tortuosity of the pore net-

work, and as is the specific surface area expressed as the ratio of surface area to solid volume.

The parameter values used in applying Eqn. 4.1 to Na-smectite and Illite are summarized in

Table 4.1. The shape factor was set to b = 3± 1 based on empirical observations in a range

of porous media (Bourg & Ajo-Franklin, 2017). Tortuosity was set to t2 = 4.0 ± 1.6 based

on measurements of water tracer diffusion in compacted Na-smectite (Bourg et al., 2006).

The specific surface area was set to 1.7 ± 0.2 nm−1 for smectite and 0.21 ± 0.03 nm−1 for

Illite based on experimental values reported in previous studies (as = 703 ± 60 m2 g−1 for

smectite and as = 78± 10m2 g−1 for Illite, converted to units of area per volume using grain

densities of 2400 ± 140 kg m−3 and 2700 ± 70 kg m−3, respectively) (Brooks, 1955; Dia-
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mond & Kinter, 1956; Mesri & Olson, 1971; Orchiston, 1954; Quirk, 1955). The values

of specific surface area used here are based on methods that probe the entire water-accessible

surface area of clay particles, including glycerol and ethylene glycolmonoethyl ether (EGME)

retention techniques but not standardN2 adsorption techniques (Diamond&Kinter, 1956;

Tournassat et al., 2015).

A well-known limitation of Eqn. 4.1 is that it does not capture the influence of pore-size

heterogeneity (Bourg & Ajo-Franklin, 2017; Dixon et al., 1999) and, therefore, does not ac-

curately predict themacro-scale permeability of clay-rich soils or sedimentary rocks (Mondol

et al., 2008; Ren et al., 2016). The comparisonwith experimental data in Fig. 4.3A, however,

indicates that Eqn. 4.1 provides a reasonable permeability model for pure Na-smectite and

Illite without the need for fitting parameters.

Two important features of the permeability of pure clay are not described by Eqn. 4.1.

First, the permeability data in Fig. 4.3A relate exclusively to sodium-exchanged clays. Other

data indicate that smectite (and, to a smaller extent, Illite) has a higher permeability at the

same porosity values if equilibrated with calcium or potassium electrolytes (Mesri & Olson,

1971). This permeability difference likely reflects the less uniform pore-size distributions of

K- and Ca-smectite (relative to Na-smectite) that results from the stronger charge-screening

capacity of K and Ca ions at the clay surface. Second, clay-water mixtures exposed to one-

dimensional consolidation are known to develop a textural anisotropy that makes their per-

meability tensor anisotropic (Hicher et al., 2000). Overall, Eqn. 4.1 is used here as a sim-

ple, yet reasonably accurate permeability model in the range of conditions of interest, i.e.,

fully-saturated Na-smectite or Illite in the absence of excessive anisotropy. Modifications to

account for clay anisotropy, other clay counterions (such as calcium or potassium), multi-
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phase flow effects (e.g., the Klinkenberg Effect), or to implement other permeability models

(Chapuis & Aubertin, 2003; Samarasinghe et al., 1982) can be readily carried out within the

present framework.

4.2.2 Parametrization of the Swelling Pressure Term

Second, we define the swelling pressure of the microporous clay matrix. For this, we use the

well-known Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloidal interactions.

More precisely, we use a semi-empirical formulation proposed by Liu (2013) for the disjoin-

ing pressure in a water film of thickness “h” between clay tactoids (i.e., stacks of clay particles

separated by≤ 3 water layers):

pswell = 2ĈNaClRT cosh (ym − 1)

− Ah

6π

(
1

h3
− 2

(h+Dp)
3 +

1

(h+ 2Dp)
3

)
+ S0exp

(
−h

l

) (4.2)

In Eqn. 4.2, the first term on the right side is Langmuir’s model (Kemper &Quirk, 1972;

Langmuir, 1938) of the osmotic swelling pressure caused by overlapping electrostatic double

layers in a slit-shaped nanopore, where ĈNaCl is the salt concentration in mol m−3, R is the

ideal gas constant (8.31446 JK−1mol−1),T is the temperature inKelvin, and ym is the scaled

electrostatic potential at the mid-plane of the nanopore, calculated here using the so-called

“compression approach” for solving the Poisson-Boltzmann equation between two charged

parallel plates in a symmetrical electrolyte solution (Liu & Neretnieks, 2008). The salinity

dependence of ym gives rise to the well-known salinity dependence of clay swelling. The
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second term is the contributionofLondondispersion forces to the swelling pressuremodeled

through Hamaker’s approach (Hamaker, 1937), where Dp is the thickness of clay tactoids

and Ah is Hamaker’s constant for clay tactoids separated by a water film. The third term

is an empirical description of the short-range “hydration repulsion” between clay particles,

where S0 and l are empirical coefficients. Parameter values and the relation betweenϕf and h

were taken fromLiu (2013) and are listed in Table 4.1. Equation 4.21 as parametrized by Liu

(2013) is used here as a convenient parametric fit to experimental data on smectite swelling

as a function of ϕf and C.

We note that Eq. 4.2 makes significant simplifications and approximations. For example,

the hydration repulsion term is purely phenomenological, while the optimal formulation and

parameterization of the London dispersion term is still unsettled in the case of smectite clay

(Gilbert et al., 2015; Tester et al., 2016). In addition, the first two terms in Eqn. 4.2 are based

on mean-field theories, i.e., they neglect short-range interactions between water, ions, and

clay surfaces (McBride, 1997;Missana&Adell, 2000). In the case ofNa-smectite, this last ap-

proximation is valid only at interparticle distances greater than 3 nm (i.e. ϕf > 0.75) (Adair

et al., 2001). One consequence of this is that DLVO theory does not predict the existence

of stable “crystalline” swelling states with interparticle distances≤ 1 nm that predominate at

high salinity, high compaction, or in aqueous chemistries dominated by divalent ions (Bourg

& Ajo-Franklin, 2017; Pashley & Israelachvili, 1984; Shen & Bourg, 2021). Furthermore,

this formulation assumes that clay swelling pressure is controlled by a single microstructural

variable (interparticle distance h or, equivalently, porosity ϕf ); more complex formulations

have been proposed in the case of other microporous media with a deformable solid skele-

ton, such as activated carbon or zeolites (Pijaudier-Cabot et al., 2011). Finally, the numerical
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method used by Liu (2013) to evaluate ym cannot be applied when C = 0; for simplicity we

use C = 0.001 M as an approximation when calculating pswell in pure water (resulting in a

∼0.05% error in said value).

To test the accuracy of Eqn. 4.2 as parameterized by Liu (2013), we usedmacroscopic data

on the swellingpressure of confinedwater-saturatedNa-smectite as a functionof compaction

and salinity (Fig. 4.3B) aswell asX-ray diffraction (XRD)measurements of h vs. salinity (Fig.

4.3C). Figure 4.3 shows that Eqn. 4.2 overestimates porosity at salinities ≥ 0.5 M NaCl,

where crystalline swelling predominates, but accurately predicts experimental data at lower

salinities.

4.2.3 Parametrization of the Diffusion Coefficient of Dissolved Salts

Third, we define the effective diffusion coefficient of dissolved salt (x) in the microporous

clay using a form of Archie’s law (Blum et al., 2007; Boving & Grathwohl, 2001):

De,x = ϕn
fDx (4.3)

Although there does not exist a universal Archie’s law exponent n for all porous media,

several studies have concluded that a value of 2.2 to 2.5 reasonably reproduces the diffusion

of ions in pure compacted clay (Revil et al., 2011; Shen&Chen, 2007; Van Loon et al., 2003;

Van Loon, 2015).

Equation 4.3 is known to oversimplify salt diffusion in clayey media, particularly by ne-

glecting the salinity-dependence ofDe,x that arises from anion repulsion in the electrical dou-

ble layer on charged clay surfaces (Malusis et al., 2003; Sherwood&Craster, 2000; Van Loon

et al., 2007; Underwood&Bourg, 2020). A notable alternative to Eqn. 4.3 that accounts for
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Figure 4.3: (a) Permeability of compacted Na‐smectite and Illite as a function of porosity; (b) swelling pressure of com‐
pacted bentonite as a function of porosity at different salinities (error bars are smaller than the symbols); and (c) poros‐
ity of Na‐smectite as a function of salinity at a small constant confining pressure. Symbols are experimental results
(Mesri & Olson, 1971; Norrish, 1954; SKB, 2011). Lines are model predictions obtained using Eqns. 4.1 and 4.2 with
no fitting parameters in Fig. 4.3A,B and with a single fitting parameter (the unspecified small confining pressure used in
the experiments, which was set to 0.03 MPa; dashed lines show the sensitivity of the model predictions to± 0.01 MPa
differences in this value) in Fig. 4.3C.
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this effect is Kemper’s model (Kemper & van Schaik, 1966; Kemper & Rollins, 1966).

De,x =
1− e−ym

t2
Dx (4.4)

where t is tortuosity as in Eqn. 4.1, ym is the same as in Eqn. 4.2, and “1− e−ym” is the equi-

librium ratio between anion concentration in the clay nanopores and in bulk liquid water.

Equation 4.4 is less empirical than Eqn. 4.3 and more consistent with the permeability and

swelling pressure models used above. However, its use would require a more complex treat-

ment of the coupled advection and diffusion of ions in Eqn. 2.82, where the impact of anion

exclusion is neglected. We note that multiphase flow effects such as Knudsen diffusion are

neglected here due to the fact that we focus exclusively in fully water-saturatedmedia (Malek

& Coppens, 2003). Equation 4.3 is therefore used here for simplicity.

4.2.4 Parametrization of Clay Rheology

Lastly, we define the effective viscosity of themicroporous clay in amanner that accounts for

the impact of clay swelling and shearing on its plastic viscosity and critical shear stress (Güven,

1993; Maciel et al., 2009). Spearman (2017) developed a model based on floc fractal theory

that predicts the rheological properties of a wide variety of clays when sheared at different

solid-water ratios:

µeff
s =

[
τ

1
4−D

0 +

(
1 +

1

βγm

(
τ0
µ∗

)m) 1
4−D

(µ∗γ)
1

4−D

]4−D

γ−1 (4.5)

τ0 = τ ∗
[

ϕs/ϕ
max
s

(1− ϕs/ϕmax
s )

]4−D ... µ∗ =
µf

(1− ϕs/ϕmax
s )2

(4.6)
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In Eqns. 4.5-4.6, ϕmax
s is the maximum solid fraction of clay, τ ∗ the critical shear stress at

ϕs = 0.5ϕmax
s ,D is the fractal dimension,β is a structural parameter,m is a structural break-

up parameter, and γ is the strain rate (calculated at each time step as the sum of symmetric

components of∇Ûs). With proper tuning, thismodelwas shown to successfully describe the

rheologies of smectite, Illite, and kaolinite clays. Parameter values were taken from Spearman

(2017) based on fitting rheological data pertaining to a 90% smectite-water mixture obtained

by Coussot et al. (1993) and are listed in Table 4.1.

We note that Eqns. 4.5 and 4.6 do not explicitly consider potential impacts of salinity

or dynamic changes in solid fraction (as in the case of shrinking and swelling) on rheology.

Instead, the Spearman model assumes that the clay is at an equilibrated solid fraction when

calculating the effective viscosity. For simplicity, we assume that the resulting effective vis-

cosity applies not only to shear, but also to expansion and contraction.

The use of Eqns. 4.1-4.6 in themodeling framework derived inChapter 2 provides closure

for the coupled systemof equations in the case of pure smectite in sodium electrolytes such as

NaCl at salinities up to 0.5M.As noted above, this closure relies on a number of assumptions

and approximations. Notably, it neglects clay fabric anisotropy (Hicher et al., 2000; Tessier,

1990) and clay dispersion into the bulk water phase. Furthermore, it relies on the assump-

tion that DLVO theory, the Kozeny-Carman equation, Spearman’s model, and the Fickian

diffusion equation described above are accurate in conditions beyond their validation in Fig.

4.3 (for example, during dynamics shearing, shrinking, and swelling). The assumptions and

approximations listed above are not intrinsic to the modeling framework derived in Chapter

2. They can be readily addressed in future studies as additional information become available

on the microscale permeability, swelling pressure, rheology, and dispersion of microporous
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clay.

4.3 Model Validation andApplication to Plastically Deformable Porous

Media (Clay)

4.3.1 ModelVerification byComparison tothe Fluid-DrivenDeformation

of a Clay Filter Cake

A quantitative validation of our model was realized by testing its ability to predict the com-

paction of a clay plug caused by water flow through said plug. To do this, we compared

our numerical results to predictions of an analytical model derived byHewitt et al. (2016) at

equivalent experimental conditions. Said analyticalmodel is based onBiotTheory and is able

predict the 1-D solid deformation of the plug as a function its initial porosity, the deforma-

tionmodulus of the solid, and the fluid pressure gradient across the plug. Hewitt et al. (2016)

validated their model against experimental results obtained with an elastically deformable

microporous medium placed within a 12 cm by 25 cm container based on the assumptions

that permeability follows the Kozeny-Carman equation, stresses follow the Terzaghi stress

principle, and fluid flow (and thus the resulting deformation-inducing pressure gradient) is

governed by Darcy’s law.

To replicate these conditions, our simulationswhere carried out on a 240by300 grid repre-

senting a 2-D container (12 cm by 15 cm) partially filled with non-swelling clay. We induced

fluid flow through the clay by a constant pressure boundary condition at the top of the con-

tainer, where fluid (and only fluid) was allowed to leave through the lower boundary. In Fig.

4.4, we compare our steady-state, non-dimentionalized numerical model predictions for Na-

smectite against Hewitt et al. (2016) analytical model at two initial porosity values, showing
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good agreement between both models. Since Hewitt et al. (2016) did not include a swelling

pressure into their analytical framework, we set pswell = 0 in our numerical simulations to

ensure proper comparison and verification of the flow-deformation mechanics. Please refer

to Table 4.1 for a detailed listing of the parameter used in this and all other subsequent sim-

ulations.

Figure 4.4: Model prediction of the compaction associated with water flow through a clay plug as a function of pressure
drop (from 0 to 200 kPa) across the clay plug: (a) schematic view of the simulated system; (b) equilibrated system as
predicted by our simulation framework (colors show clay fraction ϕs in the microporous region and fluid velocityUf in
the free fluid region); (c) comparison between Hewitt’s analytical model (solid lines) and the predictions of our numerical
model (symbols) for initial clay porosities of 0.55 and 0.65; and (d) final configurations of the system as a function of
increasing pressure drop. The simulations were carried out in a 1 by 300 grid (c) and a 240 by 300 grid (b, d). Results are
reported as the non‐dimensional volume change of the clay plug vs. non‐dimensional pressure drop across the clay plug.
Pressure in the simulations was non‐dimentionalized using a deformation modulus calculated from the clay’s critical
stress at its initial porosity [p* = p/σ, where σ = τ initial0 /(ϕinitial

f /ϕfinal
f − 1)]. For both simulations, mean

average error (MAE) was about 0.04 times the final measured volume change.

The resulting steady-state deformationprofiles are a result of thebalancebetween the clay’s

structural forces (critical stress) and the forces imposed by the fluid (viscous drag): as com-

paction increases, the permeability of the porous medium decreases, which in turn increases

the viscous stresses imposed on the medium. At the same time, given a constant pressure

gradient, flow through the plug decreases as permeability decreases, which then reduces the
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magnitude of the viscous stresses. Steady-state is achieved once the viscous drag is balanced

by the porous medium’s structural forces, which explains why systems with a higher initial

compaction deform less than their counterparts (Fig. 4.4). The good agreement shown in

Fig. 4.4C is expected (both models rely on similar assumptions such as the validity of the

Kozeny-Carman equation and Terzaghi and Biot’s principles) but also provides some confi-

dence in the ability of our model framework to represent the feedbacks between fluid flow

and solid deformation in microporous media.

4.3.2 Model Verification by Comparison toOedometric Clay Swelling Ex-

periments

As a further quantitative validation of our model (and to verify the swelling pressure effects

disregarded in the previous section)we testedmodel predictions against standard oedometric

measurements of clay swellingdrivenby a salinity change. Specifically, weusedmeasurements

byDiMaio (1996) of the volumetric swellingofwater-saturatedNa-smectite samples exposed

to a salinity shock (from 1 to 0 M NaCl) at different confining pressures (Fig. 4.5). The

experimental conditions were straightforward: individual water-saturated clay samples were

first compressed within a oedometer chamber to confining pressures of 40 kPa, 160 kPa, and

320 kPa. Subsequently, the sampleswere placed in contactwith a 1MNaCl solution through

a porous boundary until equilibrated. Swelling was then induced by replacing the saltwater

solution with distilled water while maintaining a constant confining pressure.

The swelling portion of the experimentaswasmodeled by defining a 500 by 300 grid repre-

senting a 2-D container (5 cm by 3 cm) filled with 2 cm of 1MNaCl-equilibrated compacted

smectite clay, where the clay was only allowed to swell in the positive y-direction as a result
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of salt diffusion out of the container at the lower boundary (where salt concentration was set

to zero). All other boundary conditions on the container walls were set to replicate imper-

mable surfaces with no-slip boundary conditions. For simplicity, the confining pressure was

assumed uniform throughout the clay sample and was applied as a constant in the Terzaghi

stress tensor (see Section 2.7).

Figure 4.5: Macroscopic swelling of NaCl‐saturated smectite clay (at confining pressures 40, 160, and 320 kPa) initially
equilibrated with a 1M NaCl solution and then placed in contact with a reservoir of distilled water. Experimental results
(solid lines) and approximated error (shaded regions) were obtained using data from Di Maio (1996). Simulation pre‐
dictions (symbols) were obtained using two‐dimensional 500 by 300 grids. For the three simulations, MAE was 0.06 to
0.09 times the measured final volume change.

As shown in Figure 4.5, ourmodel accurately captures the swelling kinetics ofNa-smectite

clay driven by osmotic uptake of liquid water. The agreement between ourmodel and exper-

imental data provides further confidence into the ability of our model framework to capture

feedbacks between hydrology, mechanics, and salt transport in deformable microporous me-

dia. Overall, Figures 4.4 and 4.5 show that our model, with no parameter fitting, yields rea-

sonably accurate predictions (with normalized MAEs below 0.09) of the overall extent of
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clay swelling or compaction and of the associated kinetics. Agreement is obtained regard-

less of whether the clay volume change is driven by fluid flow (Fig. 4.4) or salinity changes

(Fig. 4.5). This good agreement suggests that ourmodel captures key features of the coupled

HCM behavior of Na-smectite despite the assumptions and simplifications noted above.

4.3.3 Model Prediction of the Permeability of a Bead PackContainingNa-

Smectite as a Function of Salinity and Clay Content

Having parametrized and tested our simulation framework, we used it to predict the per-

meability of an idealized model of fine-grained soils and sedimentary media: a bead pack

containing coarse non-porous beads uniformly coated with Na-smectite clay. The idealized

system simulated here has previously been used both as a conceptual model of the hydrology

of sedimentary media and as an idealized experimental model of the properties of engineered

clay barriers (Abichou et al., 2002; Revil & Cathles, 1999; Tuller & Or, 2003). To the best

of our knowledge, it has not been previously implemented in a numerical framework that

accounts for the HCM couplings in microporous clay. As implemented here, this model

system captures both key features of fine-grained soils and sedimentary media identified in

the introduction: the co-existence of two characteristic length scales and the HCM coupled

properties of the microporous clay. As noted above, Na-smectite is used here because rea-

sonably accurate constitutive models exist to describe its swelling pressure, permeability, and

rheology at themicroscopic scale, even though themicroporous regions inmost soil and sed-

imentary media generally consist of more complex mixtures of Ca/Na-smectite, other clay

minerals, and organic matter.

Our simulations are based on a representative, yet simplified, rock geometry built upon
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the following assumptions: first, the medium’s coarse-grained, load-bearing structure can be

represented as a 2-D cross-section of a 3-D randomly distributed spherical packed bed with a

porosity of 0.64 obtained from Finney (1970); second, the initial distribution of clay is mod-

eled as a uniform film coating the coarse grains (a reasonable approximation given previous

imaging studies) (Abichou et al., 2002; Aksu et al., 2015; Peters, 2009), and third, a two-

dimensional geometry is sufficient to capture major features of the simulated system (as in

Quispe et al. (2005)). These are significant approximations; in particular, feedbacks between

fluid flow and clay dynamics may create some degree of non-uniformity in the clay distribu-

tionwithin sedimentary rocks (Song&Kovscek, 2015) and percolation thresholds associated

with pore clogging may occur more readily in two-dimensional than in three-dimensional

systems.

The system was simulated as a function of clay mass fraction (from 0 to 0.3) and salinity

(from 1 to 1000 mM NaCl). We chose this parameter space because, as noted in the intro-

duction, it represents the range over which micro and macro-pores coexist and over which

the coarse grains are load bearing. Briefly, we initialized each set of simulations by populat-

ing the 3 by 3 mm coarse grain structure with a uniform clay coating equilibrated at 1000

mMNaCl until we reached the desired clay mass fraction. Clay parametrization was consis-

tent with the verification cases described in the previous sections. We then applied a constant

hydrostatic pressure gradient in the y direction and a salinity step change across the sample

and allowed the clay to swell until it reached its equilibrium volume fraction based on the

new salinity value. A representative sample of the resulting steady-state configurations as a

function of claymass fraction and salinity is shown in Fig. 4.6. Each sample was put through

several swelling-shrinking cycles to ensure consistent results and to introduce heterogeneity
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Figure 4.6: Effect of clay mass fraction and NaCl concentration on the spatial distribution of smectite clay and available
macropore space in a 2‐D cross section of an ideal 3‐D spherical packed bed (Finney, 1970). The simulated system is 3
by 3 mm. The grid resolution is 1020 by 1020 with a voxel size of 3 µm.

approaching that present in natural systems. Although not evident in the equations, hetero-

geneous clay distributions can arise due to the combination of frictional forces imparted by

the solid grains and the clay’s non-Newtonian rheology. After we reached the steady state

configuration, the permeability of each sample was evaluated by integration of the fluid ve-

locities. Figures illustrating the predicted fluid velocity distribution in a region containing

both macropores and microporous clay are shown in Fig. 4.7.
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Figure 4.7: Steady‐state fluid velocity profiles with a 10 % clay mass fraction at different salinity values. Thin black
lines surrounding the solid grains represent the boundary between the clay matrix (within the lines) and the free fluid
(outside the lines). At high salt concentrations (A), flow within the clay (greenish shades) does not control the overall
permeability of the medium and can be considered negligible when compared to flow around the clay. Conversely, at
lower salt concentrations and higher clay volumes (C), flow is controlled by the internal permeability of the clay matrix
due to the absence of percolating flow paths through the macropores. The impact on the overall permeability of the
system is shown in Fig. 4.8.

Figure 4.8A shows that permeability varies by ten orders of magnitude within the studied

parameter space, with the largest permeability reduction (six orders of magnitude) coming

from changing the salinity at clay mass fractions near 15%. This large permeability range re-

flects the very low permeability of pure Na-smectite and the ability of the clay to block the

main preferential fluid flow paths, effectively dividing the medium’s macropores into iso-

lated regions. Because of the clay’s ability to swell, the location of the percolation threshold

depends on both salinity and clay mass fraction.

Further analysis shows that the simulation predictions in Fig. 4.8A collapse into a single

relation between log(k/k0) and the clay matrix volume fraction V clay (i.e., the ratio of vol-
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Figure 4.8: (a) Permeability of the simplified sedimentary rock model in Fig. 4.6 as a function NaCl concentration for
a range of smectite clay mass fractions. The unprobed parameter space in the lower left corner represents condi‐
tions where clay more than fills the available space between the coarse grains (i.e., clay becomes load bearing). (b)
Data from Fig. 4.8A plotted as a function of clay matrix volume fraction. The permeability data collapse into a sin‐
gle curve that can be approximated with an error function (Eqn. 4.7 with A = 9.6, S = 1.38× A, and V ∗

clay =0.25).
Note that the figure also includes data obtained using Eqns. 4.1 and 4.2 parameterized for Illite instead of smec‐
tite. The smectite and Illite permeabilities coincide below the percolation threshold (where permeability is con‐
trolled by flow through macropores) and differ by up to two orders of magnitude above the threshold (where flow
through the clay matrix predominates). (c) Comparison between Eqn. 4.7 (solid lines) and experimental datasets
on the permeability of three different types of siliciclastic sedimentary rocks (Gräfe et al., 2017; Heap et al., 2017;
Revil & Cathles, 1999) and a series of glass bead‐smectite mixtures (Abichou et al., 2002). The curves’ parame‐
ters are:A1= 4.2& V∗

1, clay= 0.25,A2= 4.8& V∗
2, clay= 0.10,A3= 7& V∗

3, clay= 0.12, and A4 =
7.4 & V∗

4,clay= 0.18 with S = 1.38× A.
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ume occupied by the clay matrix, including its internal microporosity, to the total volume

occupied by the clay and coarse grains). As shown in Fig. 4.8B, the main preferential fluid

flow path is consistently closed at V clay ≈ 25% in our simulations, in reasonable agreement

with previous predictions for spherical bead packs clogged either by clay or by cementation

(MacArt & Mueller, 2016; Tuller & Or, 2006). At clay volume fractions below this perco-

lation threshold, clay swelling influences permeability by a relatively small (but still highly

significant) two orders of magnitude.

To compare the simulation predictions in Fig. 4.8B with experimental data on the perme-

ability of clayey media, we fitted the simulation predictions of log(k/k0) vs. V clay using an

error function:

log
(

k

k0

)
=

A

2

(
erf
(
S
(
Vclay − V ∗

clay

))
− 1
)

(4.7)

In Eqn. 4.7,A is the overallmagnitude of the decrease in log k, S describes the sensitivity of

permeability to Vclay near the percolation threshold, and V ∗
clay describes the location of the

threshold. Equation 4.7 provides a reasonable fit to the simulation predictions in Fig. 4.8B

with only three parameters (though it underestimates the sharpness of the threshold). To

test the broader validity of Eqn. 4.7, we identified four experimental datasets that reported

the permeability of a series of porous media with similar mineralogy differing only in their

clay content and that expressed clay content in the same manner as in Fig. 4.8B (Abichou

et al., 2002; Gräfe et al., 2017; Heap et al., 2017; Revil & Cathles, 1999). As shown in Fig.

4.8C, Eqn. 4.7 provides accurate descriptions of all four datasets. In the five parametric fits

carried out with Eqn. 4.7 in Figs. 4.8B,C, the values of S and A were consistently related

(S/A = 1.38 ± 0.25). Fitted A values ranged from 4.2 to 9.6, a range consistent with the

77



reported permeability values of different clays, which span 4 to 5 orders of magnitude and

increase in the order Na-smectite< Ca-smectite≈ Illite< kaolinite (Mesri & Olson, 1971;

Mondol et al., 2008). Fitted values of V ∗
clay ranged from 0.10 to 0.25, in agreement with

the expectation that the location of the percolation threshold depends on the porosity of the

network of coarse grains (Aksu et al., 2015), i.e., it should be lower for systems with greater

cementation orwith less uniform grain size distributions. The simulation predictions shown

in Fig. 4.8B, as expected, are at the upper end of the range of bothA values (because we used

the lowest-permeability clay, Na-smectite) and V ∗
clay values (because we used a 2-D slice of a

3-D bead pack with a uniform bead size and no cementation).

The simulations described in this section are designed to approximate systems where the

network of coarse grains is load-bearing andwhere clay influences permeability only through

swelling and shrinking in response to salinity changes. Clay erosion, transport, and deposi-

tion are not included in ourmodel, while viscous deformation of the clay by the flowing fluid

is minimized by the use of a small fluid pressure gradient. Nevertheless, the good agreement

between the results obtainedwith smectite and Illite and between the parametric fits to simu-

lated and measured permeabilities suggest that the computational framework used here may

be applicable to clayeymediawith a range of porosities, claymineralogies, and configurations.

4.4 Model Application to Fluid Injection Into a PoroelasticMedium

As a final illustration of the versatility of the modeling framework developed in Chapter 2,

we briefly apply and verify our model for a simple poroelastic system. More precisely, we

simulate fluid injection into a symmetric poroelastic material, a model system used to mimic

the properties of filters, biological tissues, membranes, and soils (Auton &MacMinn, 2017;
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Barry et al., 1995; Nagel &Kelly, 2012). Barry et al. (1997) used Biot theory and the assump-

tion that material stress is directly proportional to the fluids’ frictional forces (i.e. drag) to

obtain an analytical solution for the pressure and deformation profiles brought about by a

constant point fluid source placed at different depths in the system shown in Fig. 4.9A. The

system studied by Barry (and replicated in our simulations) is defined by a no-slip condition

at the lower boundary (y = 0), a constant-pressure fluid point source placed at height y0 on

the axis of symmetry (x = 0), and zero-gradient boundary conditions at all other boundaries.

Please refer to Table 4.1 and Barry et al. (1997) for the complete parametrization of the sim-

ulation.

Figure 4.9: (a) Representation of the modeled system. (b) Quantitative comparison of the maximum vertical deformation
as a function of the point fluid source position (y0/h). Our model correctly predicts the vertical deformation of the
material with a MAE equal to 0.01 times the overall deformation. One potential source of error is the fact that the fluid
source in our numerical simulations was fixed in space and did not move upward with solid deformation as it does in the
analytical solution. (c‐f) Qualitative comparison of the deformation and pressure profiles obtained by our model on a
120 by 150 grid (c and e) and Barry’s analytical solution (d and f), respectively. The red arrows in c and e represent the
fluid source position in the numerical model. The parameters for these simulations can be found in Table 4.1.

The complete figure shows that our numerical framework replicates Barry’s analytical so-
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lutions for the system’smaximumdeformation in the y-direction to a relatively high degree of

accuracy for most values of y0. As stated in the original paper, the minimum at y0/h ≈ 0.4

results from two phenomena: first, when the source is near y/h = 1most of the flow leaves

through the top boundary, increasing drag near this boundary and maximizing its deforma-

tion; second, the maximum vertical deformation is essentially the sum of all local deforma-

tions along the axis of symmetry (x = 0),meaning that at lowvalues of y0, fluid drag is able to

act over more of the solid, thus increasing the overall accumulated vertical deformation. The

sum of these two effects is minimized at intermediate values of y0, leading to the observed

minimum. The tendency of our simulations to underestimate surface deformation at high

values of y0 likely reflects the fact that the location of the fluid source in our simulations is

not affected by the solid’s deformation, contrary to the analytical solution, a difference most

significant at y0/h ≈ 1 because of the first phenomenon noted above.

One notable weakness of the simulations presented here is that the fluid-solid interface

is not represented as a sharp step-function, but rather as a continuous interpolation of the

stresses between both domains. This loss of sharpness is particularly noticeable as themagni-

tudeof the deformations become large, as seen inFig. 4.9C, perhaps reflecting thebreakdown

of the validity of the elastic momentum equation in systems with large deformations. This

loss of sharpness is much less apparent in the case of the swelling porous media modeled in

the previous section, where the swelling pressure acts in favor of a sharp interface. Errors

emanating from the lack of sharpness in elastic porous media could be addressed by the in-

troduction of an artificial compression term (as used inVOFmodels) (Rusche, 2002), higher

resolution meshes, or the addition a suitable swelling pressure model.
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Table 4.1: Parameter values were obtained from Bourg et al. (2006), Diamond & Kinter (1956), Liu (2013), Mesri & Olson
(1971), and Spearman (2017) and are consistent across the simulations unless specified otherwise.

4.5 Conclusions

We have implemented, tested, and verified a multi-scale Hydro-Chemo-Mechanically cou-

pled modeling framework for porous media containing both macropores and deformable

microporous regions. We demonstrated the framework’s accuracy and versatility by model-

ing HCM-coupled viscoplastic and poroelastic dynamics.

The model was implemented and parametrized in particular to simulate the swelling be-
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havior and fluid-induced deformation of water-saturated viscoplastic Na-smectite clay. Pre-

dicted couplingsbetweenhydrology,mechanics, and salinitywere successfully validated against

experimental data and numericalmodels byDiMaio (1996) andHewitt et al. (2016) describ-

ing a broad range of simulated conditions. The model was then used to predict the perme-

ability of a spherical bead pack as a function of clay content and salinity. For this simple

model, a master parametric equation for permeability as a function of clay matrix volume

fractionwas extracted. This parametric equationwas found to be consistentwith experimen-

tal datasets on the permeability of smectite-coated glass bead packs and of different types of

siliciclastic sedimentary rocks. Finally, the model’s versatility was demonstrated by qualita-

tively predicting water-induced formation damage in a propped fracture in clayey rock and,

also, by quantitatively predicting the pressure fields and deformation profiles resulting from

fluid injection in an elastically-deformable axisymmetric porous medium, for which analyti-

cal solutions were developed by Barry et al. (1997).

Although the proposed framework has proven relatively accurate in the conditions exam-

ined, it comes with several limitations, all of which will be discussed in Chapter 9.
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I have something good... but it’s weird ...

Francisco J. Carrillo – Cyprien Soulaine

5
Applications to Multiphase-Phase Flow in

Static Multiscale Porous Media

In this chapter we focus exclusively on applying and verifying the multiphase aspect of

our model. The objective is to show that the multiscale solver converges effectively towards
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its two asymptotic limits in static porous media, namely the two-phase Darcy model at the

continuum scale and the Volume-Of-Fluid formulation at the pore scale. Additionally, we

present twoexemplary cases that showthepotential andwide-range applicability of ourmodel,

where we simulate wave propagation in porous coastal barriers and drainage/imbibition in

micro-fractures. The work shown in this chapter represents the second step toward verifying

and showcasing theMultiphaseDBB framework. This chapter is adapted fromCarrillo et al.

(2020).

5.1 Darcy Scale Validation

The model’s ability to predict multiphase flow at the Darcy scale is validated against three

well-known analytical and semi-analytical solutions. Together, these assessments test for the

correct implementation of the relative permeability, gravity, and capillary terms derived in

section 2.3. This validation follows the steps outlined in Horgue et al. (2015) for the devel-

opment and validation of their own multiphase Darcy scale solver: impesFoam. A complete

list of parameters used is provided in Tables 5.1 and 5.2.

Property Value
Water Density 1000 kgm−3

Water Viscosity 1× 10−3 Pa s
Air Density 1 kgm−3

Air Viscosity 1.76× 10−5 Pa s
Oil Density 800 kgm−3

Oil Viscosity 0.1 Pa s
Gravity 9.81m s−2

Table 5.1: Table of Fluid Properties

Model Parameter Value
pc,0 100 Pa

m (Van Genuchten) 0.5
m (Brooks-Corey) 3
β (Brooks-Corey) 0.5

Table 5.2: Table of Model Parameters
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5.1.1 Buckley-Leverett

Wefirst consider thewell-establishedBuckley-Leverett semi-analytical solution for two-phase

flow in a horizontal one-dimensional system with no capillary effects (4 m long, 2000 cells,

ϕf = 0.5, k−1
0 = 1× 1011 m−2). In this case, water is injected into an air-saturated reservoir

at a constant flow rate with the following boundary conditions: Uwater = 1× 10−5 m s−1,
∂pinlet

∂x
= 0 Pam−1, and poutlet = 0 Pa. As water flows into the reservoir, it creates a satura-

tion profile that is characterized by a water shock at its front, an effective shock velocity, and

a saturation gradient behind said front. Figure 5.1 shows a good agreement between our nu-

merical solutions and the semi-analytical solutions presented in Leverett (1940) for all three

features regardless of the chosen relative permeability model.

Figure 5.1: Comparison of the time‐dependent saturation profiles calculated from our numerical framework and
Buckley‐Leverett’s semi‐analytical solution for water injection into air‐saturated (B) and oil‐saturated (C) reservoirs.
Figure A is a visual representation of the water saturation in the reservoir over time. Figures B and C show the semi‐
analytical (lines) and numerical (symbols) solutions of the system when using the Brooks‐Corey and Van Genuchten
relative permeability models, respectively.
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5.1.2 Gravity dominated Buckley-Leverett

We then tested the exact same air-saturated system, but this time with the addition of gravity

in the same direction of the water injection velocity (see Figure 5.2). Under these conditions,

gravity becomes the dominating driving force and the following equation can be used to cal-

culate the water saturation at the front (Horgue et al., 2015):

vl
l − k0kr,l(α

front
l )

µl

ρlg = 0, (5.1)

where the symbols are consistent with the ones presented in previous sections. Given the pa-

rameters presented inTables 5.1 and5.2, Eq. 5.1 is solved iteratively toobtainαfront
l = 0.467

and αfront
l = 0.753 when using the Brooks-Corey and Van Genuchten relative permeabil-

ity (kr,l)models, respectively (Appendix A). Figure 5.2 shows that our numerical solutions

agree with the semi-analytical solutions.

5.1.3 Gravity-capillarity equilibrium

Lastly, we tested the validity of the capillary pressure term derived in Eqs. 2.92, 2.89, and

2.90 by solving for the steady state saturation profile of a one-dimensional porous column

filled with water and air (1 m tall, 1500 cells, ϕf = 0.5, k−1
0 = 1 × 1011 m−2). Here,

the initial water saturation of the column is set far from its thermodynamic equilibrium in

a step-wise fashion: the lower half is partially saturated with water (αwater = 0.5) while

the upper half is initially dry as shown in Figure 5.3A. To ensure proper equilibriation, both

fluids are allowed to flow freely through the column’s top boundary, but not through its

lower one: ∂vtop
∂y

= 0 m s−1m−1, ∂ptop
∂y

= 0 Pam−1, Ubottom = 0 m s−1, pbottom = 0 Pa.
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Figure 5.2: Comparison of the time‐dependent saturation profiles calculated from our numerical framework and the
semi‐analytical solution presented in section 4.1.2. Figure A is a visual representation of water saturation in the reser‐
voir over time. Figures B and C show the semi‐analytical (lines) numerical (symbols) solutions of the systems parameter‐
ized through the Brooks & Corey and Van‐Genuchten relative permeability models, respectively.

For this simplified case, the theoretical steady-state can be described as the balance between

capillary and gravitational forces, where gravity pulls the heavier fluid (water) downwards

while capillarity pulls it upwards. This behaviour can be described by the following equation

(Horgue et al., 2015):
∂pc
∂y

= (ρg − ρl)gy, (5.2)

which can be rearranged to yield:

∂αl

∂y
=

(ρg − ρl)gy
∂pc
∂αl

. (5.3)
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This last expression allows for the explicit calculation of the equilibrium water saturation

gradient by using the closed-formBrooks-Corey orVanGenuchten capillary pressuremodels

to obtain ∂pc
∂αl

(Appendix A). Figure 5.3 shows that our numerical model accurately replicates

the results obtained from Eq. 5.3 regardless of the chosen capillary pressure model.

Figure 5.3: Comparison of the steady state water saturation profiles calculated from our numerical framework and the
analytical solution shown in equation 5.3. Figure A is a visual representation of the initial and final water saturation pro‐
files in the reservoir. Figures B and C show the steady state saturation profiles and the resulting equilibrium saturation
gradients for both implemented capillary pressure models, respectively.

5.1.4 Darcy scale application: Oil drainage in a heterogeneous reservoir

As an illustration of the applicability of our model to more complex systems at the Darcy

scale, we simulate water injection into a heterogeneous oil-saturated porous medium (1 by

0.4 m, 2000 by 800 grid, water injection velocity = 1× 10−4 m s−1, poutlet = 0 Pa). Oil
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drainage is commonly used in the energy sector, particularly as a form of enhanced oil re-

covery (Alvarado & Manrique, 2010). Although analytical solutions such as the ones pre-

sented above are useful approximations for simple systems, they become greatly inaccurate

whenmodeling complexmulti-dimensional systemswith spatially heterogeneous permeabil-

ity. To illustrate this effect, we initialize our reservoir’s permeability field as a grid of 0.25 by

0.1 m blocks with k0 values ranging from 1× 10−13 to 4× 10−13 m2 (see Figure 5.4). The

relative permeabilities within the reservoir are modeled through the Van Genuchten model

with negligible capillary effects (Table 5.2). We note that this case was originally presented in

Horgue et al. (2015) for the development of impesFoam, a solver that uses the Implicit Pres-

sure Explicit Saturation (IMPES) algorithm to solve the two-phase Darcy model, making it a

convenient benchmark for comparison with hybridPorousInterFoam.

Under the aforementioned parametric conditions and with equivalent numerical setups

(i.e. same grid, time-stepping, and solver tolerances), Figure 5.5 shows that the simulations

performed with hybridPorousInterFoam and impesFoam develop very similar, yet not per-

fectly equivalent, saturation profiles. Of particular interest is the development of fingering

instabilities that form due to the viscosity difference between the two fluids (Saffman&Tay-

lor, 1958; Chen & Wilkinson, 1985). These instabilities are know to greatly reduce the ef-

ficiency of enhanced oil recovery, as they essentially trap residual oil behind the main wa-

ter saturation front (Figure 5.5). Previous numerical studies have shown that the evolution

of viscous fingering is highly dependent on the model’s hyper-parameters, grid refinement,

and/or solution algorithms (Ferrari & Lunati, 2013; Riaz & Tchelepi, 2006; Horgue et al.,

2015; Chen &Meiburg, 1998; Holzbecher, 2009). This characteristic explains why hybrid-

PorousInterFoam and impesFoam develop slightly different viscous fingering instabilities de-
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Figure 5.4: Simulation setup for oil drainage within a heterogeneous reservoir. The different colored blocks represent
the spatially variable permeability field.

spite having virtually perfect agreement with the previously-presented analytical solutions:

the two solvers rely on entirely distinct sets of governing equations, boundary conditions,

discretization schemes, and pressure-solving algorithms (PISO vs IMPES). Nevertheless, this

example application shows that our solver can readily simulate complex porous systems that

have traditionally been modeled using conventional single-scale Darcy solvers.

5.2 Pore Scale Validation

Having validated all aspects of themodel within the porous domain, we now test ourmodel’s

ability to recover known multiphase Navier-Stokes solutions within a non-porous domain.

This validation follows the steps used in previous validations of multi-phase CFD solvers

by Horgue et al. (2014), Xu et al. (2017), and Maes & Soulaine (2019) and involves testing

the implementation of the imposed contact angle boundary condition against several well-

known numerical and analytical cases. Some of the simulation results obtained with our

multi-scale solver are compared with simulations performed using interFoam, the algebraic

VOF solver of OpenFOAM®. In the following simulations, we implement a static contact

angle as an approximate description of multiphase behaviour at solid interfaces, while not-
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Figure 5.5: Oil drainage in a heterogeneous porous medium solved at the continuum scale using hybridPorousInter‐
Foam or impesFoam. The white rectangular grid represent the blocks with k0 values ranging from 1× 10−13 to
4× 10−13m2 as shown in the previous figure.

ing the existence of more sophisticated formulations including dynamic contact angles with

viscous bending or surface roughness (Wenzel, 1936; Cassie & Baxter, 1944; Voinov, 1976;

Cox, 1986; Whyman et al., 2008; Meakin & Tartakovsky, 2009).

5.2.1 Contact angle on a flat plate

We first test the implementation of the penalized contact angle within hybridPorousInter-

Foam by initializing several “square” water droplets on a 2-D flat porous plate with negligible

permeability (6 by 2.4 mm, 480 by 192 cells, k−1
0 = 1× 1020 m−2) and allowing them to

reach equilibrium for different prescribed contact angles (θwater =60°, 90°, 150°). These tests
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are compared against equivalent droplets initialized on conventional non-porous boundaries

and solved through interFoam. Figure 5.6A shows excellent agreement between the numeri-

cal simulations and the target equilibrium contact angle θwater. The lack of a perfectly sharp

interface (an intrinsic feature of the VOF method) makes it difficult to accurately measure

the contact angle at the solid interface. However, we can confidently state that all our results

are within 5° of the target equilibrium contact angle. These tests are virtually identical to the

ones shown in Horgue et al. (2014) and are consistent with their results.

5.2.2 Capillary rise

As a second classic test for the correct implementationofmultiphase flowat thepore-scale, we

model water capillary rise in an air-filled tube (1 by 20mm, 40 by 400 cells, θwater = 45°) and

measure the steady-state position of thewatermeniscus. To ensure a proper numerical setup,

the tube’s lower boundary is modeled as an infinite water reservoir and its upper boundary

as open to the atmosphere. To prevent initialization bias, the meniscus is initialized about 2

mm lower than the theoretical equilibrium height of 10mm, which is given by the following

equation (Jurin, 1719):

heq. =
σcos(θ)

Rρlgy
, (5.4)

where R is the tube’s radius. We then numerically simulate the system with hybridPorous-

InterFoam and interFoam, using impermeable porous boundaries with the former (k−1
0 =

1× 1020 m−2) and conventional sharp boundaries with the latter. Figure 5.6B shows the

steady state configurations of both cases, whichhave ameniscus height of 8.8mm. According

to Eq. 5.4, this height is equivalent to an imposed contact angle of 52°, a small yet significant
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difference to the imposed contact angle of 45°. We are not the first to note that interFoam (the

standard pore scale multiphase flow solver in OpenFOAM®) presents minor inaccuracies in

its ability to impose a prescribed contact angle (Horgue et al., 2014; Gründing et al., 2019).

The comparisons presented here show that our solver’s accuracy in this regard is similar to

that of interFoam.

Figure 5.6: Compilation of all test cases performed for the verification of the solver within the Navier‐Stokes domain.
Parts A, B, and C refer to the experiments described in Sections 5.2.1, 5.2.2, and 5.2.3, respectively. When present, the
shaded walls show the porous boundaries used in hybridPorousInterFoam, as opposed to the standard boundary (no‐slip
boundary condition at an impermeable wall) using in interFoam. For reference and easy comparison, the white lines in
Part A show the input equilibrium contact angle.

5.2.3 Taylor film

We nowmodel the drainage of ethanol (µeth. =1.2× 10−3 Pa s, ρeth. = 789 kgm−3) by air in

a 2-Dmicro-channel (800 by 100 µm, 280 by 116 cells, θeth. = 20°, injection velocityU = 0.4

m/s, poutlet = 0 Pa). Under these circumstances, a film forms at the channel’s boundaries as

a result of competing viscous and capillary forces at the solid interface (see Figure 5.6C). The
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height of this film is given by the following analytical solution, which we use as a benchmark

to verify our numerical simulations (Aussillous et al., 2000),

hfilm

R
=

1.34Ca2/3

1 + 3.35Ca2/3
, (5.5)

where Ca is the capillary number defined as Ca = µeth.U
σ

. We can solve Eq. 5.5 with the

given simulation parameters to obtain a film thickness of 4.35 µm. Simulations of this sys-

tem performed using hybridPorousInterFoamwith impermeable porous boundaries (k−1
0 =

1× 1020 m−2) and interFoamwith conventional boundaries yield a value of 4.50 µm, repre-

senting a relative error of about 3% or 0.15 µm. These tests and their results are consistent

with numerical simulations reported by Graveleau et al. (2017) andMaes & Soulaine (2019)

using interFoam.

5.2.4 Pore scale application: Oil drainage in a complex pore network

As we did at the end of the Darcy scale verification section, we now illustrate our model’s

applicability to more complex systems by presenting a simulation of oil drainage, this time at

the pore scale. The relevance of the simulated system follows from our previous illustrative

problem, as this is simply its un-averaged equivalent at a smaller scale. The complexity of

the simulated system (1.7 by 0.76 mm, 1700 by 760 cells, water injection velocity = 0.1 m/s,

θoil = 45°, poutlet = 0 Pa) stems from the initialization of a heterogeneous porosity field

as a representation of a cross-section of an oil-wet rock. Here, the porosity is set to one in

the fluid-occupied space and close to zero in the rock-occupied space (See Fig. 5.7A). This

allows for the solid grains to act as virtually impermeable surfaces (k−1
0 = 1× 1020 m−2) with

wettability boundary condition (Horgue et al., 2014). To verify the accuracy of our solver,
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we solved an equivalent systemwith interFoam by removing the rock-occupied cells from the

mesh and imposing the same contact angle at these new boundaries through conventional

methods.

Figure 5.7 shows that the results of the two simulations are practically identical, down

to the creation of the same preferential fluid paths and the same droplet snap-off at 5 ms.

Nevertheless, there are minor differences in the results, where some interfaces are displaced

at slightly different rates than their counterparts (see the upper right corner at 10 ms). We

attribute these slight differences to the differing implementations of the contact angle at the

solid boundaries. We invite interested readers to find this case in the accompanying toolbox

and to refer to the extensive literature on this topic for further discussion on numerical and

experimental studies of drainage and imbibition (Lenormand et al., 1988; Ferrari & Lunati,

2013;Datta et al., 2014;Roman et al., 2016;Zacharoudiou et al., 2018;Liu et al., 2019; Singh,

2019) .

5.3 Hybrid Scale Applications

The complete body of work presented in the previous two sections verifies the capability of

our model to perform simulations of multiphase flow in complex porous media at the pore

and continuum scales. We now show how hybridPorousInterFoammakes the simulation of

hybrid scale multiphase systems a fairly straightforward endeavor (a task that is challenging

to perform with conventional methods). The main challenge when modeling these systems

can be summarized by the following question: How can we rigorously model the porous in-

terface between coupled Navier-Stokes and Darcy scale domains? Although this is still an

open question, we attempt to approximate an answer by guaranteeing three of its necessary
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Figure 5.7: Oil drainage in a complex porous medium solved at the pore scale using hybridPorousInterFoam and inter‐
Foam. The shaded sections represent solid grains (modeled using ϕf = 0.001 and k

−1
0 = 1× 1020m−2 in hybrid‐

PorousInterFoam) and the blue and red colors represent oil and water, respectively.

components in the present micro-continuum framework: first, mass conservation across the

interface; second, continuity of stresses across the interface and; third, a wettability formu-

lation at the interface. The first two components are intrinsic features of the solver which

have been proven necessary and sufficient to accurately model single phase flow in hybrid

scale simulations (Neale & Nader, 1974) and have been used as closure conditions in previ-

ous multiphase models (Lacis et al., 2017; Zampogna et al., 2019). The latter, as explained in

the pore scale validation section, is roughly approximated through a constant contact angle

boundary condition. We recognize that these components represent an approximation to

the complete description of the boundary. Nevertheless, to the best of our knowledge, there
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does not exist a better way to model this interfacial behavior, a testament to the novelty and

potential of the proposed modeling framework.

The following illustrative cases are used to show our model’s capability to simulate multi-

phase systems at the hybrid scale. They are also included as tutorial cases in the accompanying

toolbox.

5.3.1 Wave propagation in a coastal barrier

Coastal barriers are used throughout the world to prevent flooding, regulate water levels, and

protect against inclementweather (Morton, 2002). Accurate simulation ofwater interaction

with these barriers is challenging as it requires predicting the behavior of open water at large

scales (Navier-Stokes) while also resolving small-scale multiphase effects within the barrier

itself (Darcy flow).

We created a three-dimensional coastal barrier (8.3 by 2.7 m by 0.25 m, 1660 by 540 by 50

cells) by initializing aheterogeneousporosityfield in the shapeof abarrier (k−1
0 =5× 107 m−2,

ϕf,barrier = 0.5) and by setting the water level such that it partially covers the barrier (see

Figure 5.8). In this particular case, we chose not to impose a contact angle at the barrier-

water interface as its effects would be minimal when compared to macroscopic gravitational

effects (Bond Number = ∆ρ(Length Scale)2gy
σ

>> 1). To ensure proper initialization, we al-

lowed the water saturation profile on the above-water section of coastal barrier to reach its

capillary-induced steady state (similarly to the capillary rise simulation presented in Section

5.2.2). This process was modeled using the Van Genuchten relative permeability and cap-

illary pressure models (m = 0.8, pc,0 = 1000 Pa). After equilibration, we started the sim-

ulation by initializing a wave as a rectangular water extrusion above the water surface. To
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Figure 5.8: Coastal barrier simulation at different times. The thin black line represents the boundary of the porous
solid: ϕf and k

−1
0 are set to 0.5 and 5× 107m−2 below said line and to 1 and 0 above it, respectively. The 2‐D

representation shows a plane that cuts through the middle of the 3‐D simulation.

ensure proper wave propagation behavior, we tuned the simulation’s numerical parameters

(discretization schemes, linear solvers, time stepping strategy) according to the guidelines es-

tablished in Larsen et al. (2019).

98



The results from this simulation show that we can simultaneously model coupled wave

and Darcy dynamics in three dimensions. The snapshots shown in Figure 5.8 illustrate how

water saturation within the porous domain is controlled by the crashing of waves, gravity,

and capillary effects. The associated wave absorption and dissipation cycle brought about

by the porous structure is repeated every few seconds with lowering intensity until the ini-

tial configuration is eventually recovered. To the best of our knowledge, Figure 5.8 shows

the first existing numerical simulation coupling multiphase flow with real capillary effects at

two different scales without the use of differentmeshes, solvers, or complex interfacial condi-

tions. Other models such as olaFlow have been developed to simulate similar wave dynamics

with coastal barriers (Higuera et al., 2013). Many of these models rely on the assumption

that the pores within the coastal barrier are large (>10 cm), meaning that they can reason-

ably ignore capillary effects within the porous medium. Contrastingly, our model makes no

such assumption, meaning it can also be used to model coastal barriers with arbitrarily small

pores (such as in sand or gravel structures) and also should be applicable to other types of

groundwater-surface water interaction (Maxwell et al., 2014).

5.3.2 Drainage and imbibition in a fractured microporous matrix

A second conceptually similar, yet completely different hybrid scale application of hybrid-

PorousInterFoam involves the injection of fluids into fractured porous materials. Accurately

capturing the fluid behavior in these systems is especially challenging due to the fact that it re-

quires accounting for multiphase effects simultaneously within the fracture (Navier-Stokes),

in the surrounding microporous matrix (Darcy), and at the porous boundary (the contact

angle implementation).

99



Here, we model drainage and imbibition in a water-wet fracture system, where we inject

air into a 90% water-saturated microfracture in the former and we inject water into a 90 %

air-saturated microfracture in the latter (1.2 by 0.5 mm, 1200 by 500 cells, θwater = 45°, fluid

injection velocity = 0.1 m s−1, poutlet = 0 Pa). The relative permeabilities and capillary

pressures in the heterogeneously-initiated porous domain (ϕf = 0.5, k−1
0 = 4× 1012 m−2)

are modeled through the Brooks-Corey model with m = 3, pc,0 = 100 Pa, and β = 0.5.

Figure 5.9 presents the results of these simulations and illustrates how stronglymulti-scale

wettability effects can influence simulations results. In both cases, the injected fluid is able to

invade the microporous matrix, but the mechanism through which it does is completely dif-

ferent. In the case of water injection (imbibition), the wetting contact angle boundary con-

dition encourages complete water saturation of the whole fracture such that air is completely

displaced by time = 125 ms. Furthermore, throughout the whole process, the microporous

capillary pressure acts as an additional driving force for water invasion into the surrounding

microporous matrix, leading to the almost complete saturation of the whole system by time

= 500 ms. This process has some strong analogies to the flow of water in into hygroscopic

materials(Zhou et al., 2019).

Thedrainage case is slightly less intuitive, yet conceptuallymore interesting. Here, the con-

tact angle andmicroporous capillary pressures act against the invasion of air into the fracture

and into the surrounding porousmaterial, respectively. The result is that the air cannot effec-

tively displace water from the fracture, leading to the trapping of water droplets in fracture

ridges. Initially, these droplets act as barriers that prevent air entry into the porousmatrix (see

time = 125 ms). However, as the flow-induced pressure gradient pushes air into the porous

matrix, thewater saturation in the pores surrounding the droplets decreases. The system then
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responds by increasing the capillary pressure at the porous interface, which eventually leads

the water droplets to imbibe into the matrix. Lastly, we highlight the clear time scale sepa-

ration between the imbibition and drainage cases, as the invading interface progresses about

three times more slowly within the microporous matrix in the latter case.

Figure 5.9: Drainage and imbibition in a microporous fracture. Shades of blue and red represent of the degree of air
and water saturation, respectively. The thin white line shows the fracture outline (i.e. the fluid‐solid interface), which
separates the open fracture (ϕf = 1, k−1

0 = 0) from the porous fracture walls (ϕf = 0.5, k−1
0 = 4× 1012m−2)

located above and below it.

Several similar dual porosity models have been proposed to model the types of effects il-

lustrated in Figure 5.9, but never in this way or to this degree of detail (Douglas et al., 1991;

Di Donato et al., 2003). Many of these models rely on a description of fractures as single-

dimensional features with high porosity and permeability values within a pure Darcy scale
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simulation (Nandlal & Weijermars, 2019; Yan et al., 2016). Although very useful, many of

these simulations ignore the geometric capillary effects and non-linear couplings presented

above. Our approach can therefore be seen as the missing link between pore-scale modeling

and Discrete Fracture Networks (Karimi-Fard & Durlofsky, 2016) and as a useful tool for

refining the transfer functions used in these large scale models.

5.4 Conclusions

We have successfully tested and verified a multiscale model for two-phase flow in porous

media. This modeling framework and its open-source implementation hybridPorousInter-

Foam can be used to simultaneously model multiphase flow at two different length scales:

a Darcy Scale where sub-voxel fluid-fluid interactions within a porous medium are modeled

through relative permeability and capillary pressure constitutive models and a pore scale (or

Navier-Stokes scale) where the solid material is non-porous and fluid-fluid interactions are

modeled through a continuum representation of the Young-Laplace equation. Furthermore,

our model is able to do this through the use of a single momentum conservation equation

without the need to define different meshes, separate solvers/domains, or complex interfacial

conditions. The proposed framework is an accurate and straightforward way to introduce

the physics of two-phase flow in porous media in CFD softwares.

Through this study, we showed that ourmodel can successfully simulatemultiphaseDarcy

andNavier-Stokes flowto the same standard (andwith the same assumptions and limitations)

as conventional single-scale solvers impesFoam and interFoam. The couplingbetween the two

scales at porous interfaces is handled by ensuringmass conservation and continuity of stresses

at said boundary, as well as by implementing a constant contact angle wettability condition.
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We then leveraged all these features to show that ourmodel can be used tomodel hybrid scale

systems such as wave interaction with a porous coastal barrier and drainage and imbibition

in a fractured porous matrix.

Although the proposed formulation represents a significant advance in the simulation of

multiscale multiphase systems, we note that further study is required in particular to prop-

erly and rigorously model the multi-scale porous interface. The implemented interface, as

it stands, has been shown to accurately predict single phase flow into porous media (Neale

& Nader, 1974), impose static contact angles over porous boundaries (Horgue et al., 2014),

and approximate multiphase flow in porous media (Lacis et al., 2017). However, its accu-

racy when modeling multiphase flow at rough porous interfaces is still an open question, as

there does not currently exist a rigorous formulation to model such behaviour. The deriva-

tion, implementation, and verification of such a boundary condition and the inclusion of

erosion, chemical reactions (Soulaine et al., 2017, 2018), and solid mechanics (Carrillo &

Bourg, 2019) into this framework will be the focus of subsequent chapters and investiga-

tions.
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All models are wrong, but some are useful

George E. P. Box

6
Application toMultiphase Flow in

Multiscale Deformable Porous Media

Most of the underlying components of the Multiphase DBB approach described

in Chapter 2 have been already tested and verified. Chapter 4 validated the momentum
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exchange terms as an effective coupling mechanism between a single fluid phase and a de-

formable plastic or elastic porous medium. The effects of confining and swelling pressures

on porousmedia were also examined in said study. Then, Chapter 5 extensively validated the

extension of the Darcy-Brinkman equation into multiphase flow within and around static

porous media by comparison with reference test cases in a wide range of flow, permeability,

capillarity, and wettability conditions. Therefore, the only thing left to validate is the abil-

ity of the Multiphase DBB model to accurately predict the behavior of multiscale systems

that exhibit coupling effects between multiple fluids and a deformable porous matrix. This

chapter focuses on addressing this last point by using our model to replicate known solu-

tions to coupled problems, with a particular emphasis on fracture mechanics. Additionally,

it presents two exemplary cases that show the potential and wide-range applicability of our

coupled model, where we simulate wave propagation in poroelastic coastal barriers and sur-

face cracking/subsidence as a result of subsurface hydraulic fracturing. The work presented

here is adapted from Carrillo & Bourg (2021b) and represents the third and last step in the

journey of verifying and showcasing the Multiphase DBBmodel.

6.1 Model Validation

We begin with two validation cases relating to multiphase poroelasticity and the coupling

between solid deformation and fluid pressure. Then, we proceed with two poroplastic cases

that validate this framework for multiscale plastic systems. Finally, we conclude with two

additional cases that verify the implementation of the capillary force interaction terms. These

cases can be found in the accompanying CFD simulation package.
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6.1.1 Terzaghi Consolidation Problem

The Terzaghi uniaxial compaction test has been extensively used as a benchmark for the val-

idation of numerical codes relating to poroelasticity (Terzaghi et al., 1996). Its main utility

is to test the accuracy of the solid-fluid couplings that relate fluid pressure to solid deforma-

tion and vice versa. The problem consists of a constrained saturated elastic porous medium

that is abruptly compressed from its upper boundary by a constant uniaxial load (Figure 6.1).

This creates a sudden increase in pore pressure, which is then dissipated by flow through the

upper boundary (all other boundaries have impermeable boundary conditions). In the case

of a one-dimensional porous medium, the resulting temporal and spatial evolution in fluid

pressure can be described by the following simplified analytical solution (Verruijt, 2013).

p

pmax

= erf
(
h− z

2
√
cvt

)
for

cvt

h2
≪ 1 (6.1)

where cv = (k0E (ν − 1))/(η(2ν2 + ν − 1)) is the consolidation coefficient, k0 is per-

meability, E is Young’s modulus, ν is Poisson’s ratio, η is the fluid’s unit weight, h is the

column height, and z is the vertical coordinate. Our equivalent numerical setup is shown

in Figure 6.1. The values of the relevant parameters in our simulations are h = 10 m,

k0 = 5 × 10−11 m2, E = 2 MPa, and ν = 0.25. To show the accuracy of our model

across different conditions, the loading pressure was varied from 10 to 200 kPa (Figure 6.1B)

and the porosity from 0.25 to 0.75 (Figure 6.1C). Lastly, the column was partially saturated

(αw = 0.5) with fluids with equal densities (ρf = 1000 kg/m3), viscosities (µf = 1 cp),

and negligible capillary effects. This last point allowed for testing the validity of the fluid-

solid couplings irrespective of the simulated phases without violating any of the assump-
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tions present in the analytical solution. Our numerical results show excellent agreementwith

Equation 6.1 for all tested conditions.

Figure 6.1: One‐dimensional Terzaghi consolidation problem. (A) Simulation setup. (B) Analytical (solid lines) and numer‐
ical (symbols) pressure profiles at t = 100 s for different loading pressure values. (C) Time‐dependent pressure profiles
for different column porosity values (From top to bottom: ϕs = 0.75, 0.5, 0.25).

6.1.2 Pressure Oscillation in Poroelastic Core

This verification quantifies the effects of the seismic stimulation of a poroelastic core satu-

rated with water and trichloroethene (TCE). Our simulations follow the experimental and

numerical set up described in Lo et al. (2012), where a horizontal one-dimensional sand

core (0.3 m long, 30 × 1 grid cells, ϕf = 0.5, αw = 0.9, k0 = 1.1 × 10−11 m2) is sub-

jected to constant uniaxial compression and oscillatory pore pressure variations imposed by

time-dependent boundary conditions (Figure 6.2). In this case, flow is allowed through both

boundaries, which results in a system that continuously undergoes a relaxation-compression

cycle. The ensuing cyclical change in the core’s fluid content as a function of time can be
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described by a semi-analytical solution first derived in Lo et al. (2012) and reproduced in Ap-

pendix E.

Figure 6.2: Change in fluid content of an oscillating poroelastic core. (A) Simulation setup. (B) Semi‐analytical (solid lines)
and numerical solutions (symbols) for the percent change in the core’s fluid volume as a function of time.

For our matching simulations, the porous structure’s Young’s modulus was set to E =

53 MPa and its Poisson ratio to ν = 0.32. Here, water density was ρw = 1000 kg/m3,

water viscosity was 1 cp, TCE density was ρTCE = 1480 kg/m3, and TCE viscosity was

µTCE = 0.57 cp. Furthermore, the pressure at the left boundary was held at p = 1 kPa

while the pressure at the right boundary was set by p = p0sin (2πft), with p0 = 1 - 2MPa

and f = 35 - 70Hz. Lastly, the core was uniaxially compressed through a constant stress of

1 kPa applied at both boundaries. A comparison between our numerical solutions and Lo’s
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semi-analytical solution is presented in Figure 6.2, yielding excellent agreement for all tested

cases.

Wenote that theMultiphaseDBB formulation should be able to describe ‘Slow”Biot pres-

sure waves caused by the relative motion of the solid and fluid phases which occurs at much

higher frequencies than the ones simulated here (i.e. 10 MHz). However, capturing these

effects and modelling “Fast/Compressional” pressure waves would require the implementa-

tion of a pressure-velocity coupling algorithm that allows for compressible flow (Lo et al.,

2012). Such an endeavour is outside the scope of this dissertation.

6.1.3 Capillary Pressure Effects in a Poroelastic Column

Having verified the two-way coupling between solid deformation and fluid pressure, we now

verify the implementation of the capillary pressure terms within the solid mechanics equa-

tion. To do so, we simulate a poroelastic column (1m tall, 1500 cells, ϕf = 0.5) bounded by

two non-wetting fluid reservoirs at its upper and lower boundaries. The column is initialized

with a linear saturation profile spanning from αw = 0 to 1 (see Fig. 6.3). Fluid saturation is

kept fixed by not solving Equation 2.84, and the mobilities of both fluids are set to very high

values (Mi = 1 × 1010 m3/kg.s) to minimize drag-related effects. Under these conditions,

the solid’s effective stress is exclusively controlled by capillary effects and is described by the

following analytical solution:

Effective Stress = ϕs × αw × pc (6.2)

We used the Van Genutchen capillary pressure model withm = 0.6 or 0.8 and pc,0 = 50

to 2000 Pa to calculate the solutions to said problem. The resulting agreement between the
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Figure 6.3: Capillary effects in a poroelastic column. (A) Simulation setup. (B& C) Analytical (solid lines) and numerical
(symbols) effective stress profiles for different capillary pressure values (pc,0 = 50 to 2000 Pa) and Van Genuchten
coefficients (m = 0.6 and 0.8).

numerical and analytical solutions, shown in Fig. 6.3, confirms the accuracy of the fluid-

solid capillary pressure coupling implemented in our model. Furthermore, the transitional

behaviour of the effective stress at the macroscopic solid-fluid interface confirms the appli-

cability of the interfacial condition described in Section 2.11: as expected, solid stresses are

dictated by standard elasticity theory in the porous region and become negligible in solid-free

regions.

Given that the fluid-solid couplings in a poroelastic solid are now verified, we proceed to

verify said terms for poroplastic materials.

6.1.4 Fluid Invasion and Fracturing in aHele-ShawCell

The third verification case (and thefirst poroplastic case) consists in thequalitative replication

of a set of fracturing experiments that examined the injection of aqueous glycerin into dry

sand within a 30 by 30 by 2.5 cmHele-Shaw cell (Huang et al., 2012b,a). These experiments
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are inherently multiscale, in that the characteristic length scale of fractures in this system

(∼ cm) is orders of magnitude larger than that of pores within the microporous matrix (∼

100 µm). They are also multiphysics, as they clearly exemplify the drag-controlled transition

from Darcy flow within the porous medium to Stokes flow in the open fractures and the

couplingbetween thehydrodynamics of fluidflowand themechanics of fracturepropagation

(Fig. 6.4).

The experimental setup involved the injection of aqueous glycerin at various flow rates q

between 5 and 50ml/min while also varying the fluid’s viscosity µgly between 5 and 176 cp

for different experiments. Our numerical simulations were parameterized using measured

values of the glycerin-air surface tension (γ = 0.063 kg/s2), the density of pure glycerin

(ρgly = 1250 kg/m3), the density of air (ρair = 1 kg/m3), the viscosity of air (µair =

0.017 cp), and the average radius and density of sand grains (100 µm and 2650 kg/m3, re-

spectively). Tomimic the sand’s experimental configuration and permeability, the simulated

solid fractionfieldwas set to a random initial normal distribution such thatϕs = 0.64±0.05

and the permeability was modelled as a function of the solid fraction through the Kozeny-

Carman relationwith k0 = 6.7×10−12m2. Relative permeabilities were calculated through

the Van Genutchen model with the Van Genuchten coefficientm set to 0.99 (see Appendix

A), while capillary pressures were deemed negligible (as 2γr−1 ≪ µk−1UfL). Finally, the

porous medium was modeled as a continuous Hershel-Bulkley-Quemada plastic (Appendix

B) with kinematic yield stress τ0 = 16.02m2/s2 (Quemada, 1977). Plasticity was used as the

preferred mode of solid rheology due to its ability to account for the compressive and irre-

versible effects caused by fracturing within these experiments (Abou-Sayed et al., 2004; van

Dam et al., 2002).
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Numerically speaking, the simulations were carried out in a 30 by 30 cm 2-D grid (500

by 500 cells) with constant velocity and zero-gradient pressure boundary conditions at the

inlet, zero-gradient velocity and zero pressure boundary conditions at the boundary walls,

and a solid velocity tangential slip condition at all boundaries (i.e. the solid cannot flow across

the boundaries, but the fluids can). Lastly, to enable a closer comparison between our 2D

simulation and the 3D experiment we added an additional drag term to the fluidmomentum

equation equal to 12µa−2U f , which accounts for viscous dissipation through friction with

the walls in a Hele-Shaw cell with aperture a (Ferrari et al., 2015).

As shown in Figure 6.4, a dramatic transition in the mode of fluid invasion is observed

with increasing fluid injection velocity and viscosity. At low flow rates and low viscosity

(q = 5ml/min, µ = 5 cp), there is no discernible solid deformation and the main mode of

fluid flow is through uniform invasion of the porousmedium (Figure 6.4A). At intermediate

flow rates and low viscosity (q = 25 ml/min to 30 ml/min, µ = 5 cp), we still observe a

uniform invasion front, but small fractures begin to appear (Figure 6.4B, C). At high viscos-

ity (µ = 176 cp), we see clear fracturing patterns preceded by a non-uniform fluid invasion

front (Figure 6.4H, I).

Figure 6.4 shows that our simulation predictions are qualitatively consistent with the ex-

periments presented inHuang et al. (2012b) with regard to both the stability of the capillary

displacement front and the observed fracturing transition behavior. As suggested above, ac-

curate prediction of this transition requires not only proper handling of fluid-fluid interac-

tions (surface tension and relative permeability effects), but also accurate descriptions of their

relationship with solid mechanics (drag) and the proper implementation of a solid rheologi-

calmodel that can replicate irreversible andunstable fracturing processes. Wenote that in our
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Figure 6.4: Comparison of experimental (A, B, C, G, H, I) and simulated (D, E, F, J, K, L) fracturing in a Hele‐Shaw cell. The
color bar represents the solid fraction within the simulations (where red implies a pure solid and blue pure fluids) and
the black lines represent the advancing glycerin saturation front. The experiments shown here are part of the results
presented in Huang et al. (2012b).

simulations, fracture initialization and propagation are predicted based on continuum-scale

equations for the rheology and mechanics of the bulk microporous solid, with no specific

treatment of grain-scalemechanics. Grid-level instabilities are brought about by the normally
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distributed porosity and permeability fields, as shown in Appendix C. The microstructural

differences between the experiments and our simulations (most clear in Figure 6.4C, F, and

H, K) likely arise at least in part from the fact that the solid is modelled as a continuum rather

than a granular material.

This section demonstrates that the multiphase DBB model can be used to replicate and

predict the main mode of fluid flow and solid deformation within fracturing systems. A

comprehensive study of the controlling parameters for multiphase fracturing in the presence

of both viscous and capillary stresses will be the focus of the next chapter (Chapter 7).

6.1.5 Modeling FracturingWellbore Pressure

Having shown that our model can qualitatively predict fracturing behavior, we now aim to

determine whether it can do so in a quantitative matter. As depicted in Figure 6.5, fluid-

induced fracturingof low-permeability rocksproceeds through the followingwell-established

series of stages: First, fluid pressure increases linearly as fracturing fluid is injected into the

wellbore. Second, as wellbore pressure increases and approaches the leak-off pressure, a small

amount of pressure is propagated by fluid leakage into the rock. Third, fluid pressure con-

tinues to increase until it reaches the breakdown pressure, at which point it is high enough to

fracture the rock. Fourth, a fracture is initiated and propagates; the wellbore pressure slowly

decreases. Fifth, injection stops, fracture propagation stops, and wellbore pressure rapidly

dissipates (Abass et al., 1996; Abou-Sayed et al., 2004; Huang et al., 2012b; Papanastasiou,

2000; Santillán et al., 2017).

In this section we aim to numerically replicate the time-dependent fracturing wellbore

pressure during fracture propagation (i.e., the fourth stage outlined above) as described by
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Figure 6.5: Conceptual representation of wellbore pressure evolution during fluid‐induced fracturing of low permeability
rocks. In this section, we are interested in modeling the behavior between tfrac and tstop.

an analytical solution presented in Barros-Galvis et al. (2017).

pwell = p0 −
µq

4πk0h

[
ln

(
tk0τ0

ϕfµr2well

)
+ 0.81

]
(6.3)

where t is the time elapsed since fracture initialization, q is the fluid injection rate, pwell is the

wellbore pressure, p0 is the minimum pressure required for starting a fracture (a function of

the solid’s yield stress τ0), h is the formation thickness, and rwell is the wellbore radius. The

remaining variables follow the same definitions described earlier.

The general numerical setup is almost identical to the one presented in the previous sec-

tion. The key difference is that we now inject aqueous glycerin into a strongly-non wetting

(and thus almost impermeable) porous material. This is done to ensure an accurate replica-

tion of the analytical solution and its related assumptions, where fracturing is themainmode

of fluid flow and there is virtually no fluid invasion into the porous matrix. The exact sim-
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ulation parameters are q = 46 to 110ml/min, τ0 = 0.2 or 2m2/s2, k0 = 6.7 × 10−11 or

6.7 × 10−12 m2, µgly = 5 cp, andm = 0.05. Note that low values ofm indicate that the

porous formation is strongly non-wetting to the injected fluid. All other parameters are as in

the previous section.

Lastly, as hinted at before, a notable characteristic of our model is that different normally-

distributed solid fraction field initializations give different fracturing results (Appendix C).

For this reason, we performed four simulations for each parameter set. In Figure 6.6, we

present the average predicted wellbore pressure evolution with errors bar representing the

95% confidence interval.

Figure 6.6 shows that our model can accurately and reliably predict the pressure and de-

formation behavior of a variety of fracturing systems, as all curves exhibit excellent agreement

with their respective analytical solution. Note that the length of each curve relates inversely

to the injection speed. This is because fractures at higher injection rates consistently reach

the system’s boundary faster than their counterparts, at which point there is a sharp decrease

in pressure and the analytical solution no longer applies. Therefore, each curve’s cutoff point

represents the time at which the fracture effectively becomes an open channel between the

wellbore and the outer boundary, normalized to the average value of that time for the slowest-

moving fracture (i.e. t = tmax).

The successful replicationof the analytical pressureprofiles in this sectionverifies themodel

components pertaining to the pressure-velocity-deformation coupling and the two-way mo-

mentum transfer between the fluid and solid phases (drag). Therefore, the only model com-

ponent left to verify is the implementation of the capillary force terms during fracturing of a

plastic solid.
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Figure 6.6: Wellbore pressure as a function of injection rate and time. (A) The initial simulation setup showing the initial
wellbore radius rwell = 1.3 cm, as well as the normally distributed solid fraction field. (B) The fractured system,
where the thin black line represents the position of the advancing glycerin saturation front. C and D show the wellbore
pressure as a function of time for different flow rates and different combinations of solid yield stress and permeability.
Solid curves represent analytical solutions, while symbols represent simulation predictions. The color scheme in A and B
is the same as in Figure 6.4, and pmax is the maximum analytically‐predicted pressure in each simulation.

6.1.6 Capillary Effects on FracturingWellbore Pressure

Our fifth verification systematically varies the capillary entry pressure within non-wetting

fracturing systems to quantify its effects on wellbore pressure. For this, we consider two

different complementary cases: one where capillary forces are comparable to their viscous

counterparts, and another where they are significantly larger than them. All parameters are

the same as in the previous experiments (Section 6.1.5) unless otherwise specified.

The first set of experiments expands the previous section’s analysis into strongly non-
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wetting systems with the addition of a constant capillary pressure jump at the fracture inter-

face imposed by a flat capillary pressure curve (pc = pc,0 = 0 to 2 kPa, τ0 = 2m2/s2, k0 =

6.7× 10−12 m2, m = 0.05, and q = 78ml/min ). In this case, all the assumptions present

in the fracturing analytical solution (Eqn. 6.3) are satisfied. However, said solution still does

not account for capillarity. For constant flow in non-wetting systems, the addition of a con-

stant capillary entry pressure jump at the fluid-solid interface would increase the calculated

propagation pressure in Eqn. 6.3 by said value such that pnewwell = pwell + pc. This effect is ex-

emplified in Figure 6.7A,wherewe present the updated analytical results in conjunctionwith

our equivalent numerical results, demonstrating excellent agreement between them. Note

that the predicted linear relationship between wellbore pressure and capillary entry pressure

is not explicitly imposed in the numerical model. On the contrary, it arises naturally from

the balance of viscous, capillary, and structural forces in Eqns. 2.85-2.87.

The second set of experiments modifies the previous experiments by making the porous

medium significantly more permeable, while still maintaining a constant capillary pressure

jump at the fracture interface (pc = pc,0 = 1 to 3 kPa, τ0 = 0.2 m2/s2, k0 = 6.7 ×

10−11 m2, m = 0.99, and q = 78ml/min). This results in a set of cases where the wellbore

pressure is increasingly controlled by the capillary pressure drop rather than by the viscous

pressure drop across the fracture and porous formation.

Figure 6.7 demonstrates precisely this effect. Our simulations show that thewellbore pres-

sure always decays towards the capillary entry pressure once viscous effects are dissipated

by fracture growth, i.e., we observe a transition between viscous- and capillary-dominated

regimes. At low values of pc,0 (< 2500 Pa) the entry pressure is not high enough to prevent

fluid flow into the surrounding porous matrix during fracturing (Figure 6.7B-H). The re-
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Figure 6.7: Effect of capillary entry pressure on fracturing wellbore pressure. (A‐B) Wellbore pressure as a function of
time and entry pressure for low and high permeability systems, respectively. In B, curves at increasingly high pressures
were cut off for illustrative purposes and the solid line represents a fitted reference logarithmic pressure descent curve.
(C‐H) Time evolution of fractured system with a 1 kPa capillary entry pressure and high permeability. (C) Initial fluid
invasion (t/tmax < 0): at early times the wellbore pressure rises rapidly and becomes larger than the entry capillary
pressure. The fluid invades the porous formation symmetrically. (D) Fracture initiation (t/tmax = 0): The wellbore
pressure continues to rise until it is larger than the breakdown pressure, at which point small fractures start to form.
Fluid invasion continues. (E‐F) Fracture propagation (t/tmax > 0 | pwell > pc,0): the wellbore pressure drops as
fractures propagate. Fluid invasion continues asymmetrically around said fractures. (G) Fluid invasion stops (t/tmax >
0 | pwell ∼ pc,0): As the wellbore pressure keeps dropping, the entry capillary pressure condition at the porous
interface ensures that that wellbore pressure never goes below pc,0, at which point fluid invasion stops. (H) Fracture
reaches the simulation boundary (t/tmax = 1). The color convention in Figures C‐H is the same as in Figure 6.4.

sulting pressure drop cannot be modeled by the previously presented analytical solution (as

it violates the no leak-off assumption), but still follows a logarithm-type curve that is char-

acteristic of flow in fracturing systems. With increasing fracture propagation, the viscous

pressure drop decreases until thewellbore pressure equals the entry pressure, which is, by def-

inition, theminimumpressure drop required for fluid flow in highly permeable non-wetting

systems. Finally, we note that in cases where capillary entry pressure is high relative to the
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pressure required to fracture the solid (i.e., at pc,0 > 2.250 Pa in the conditions simulated

in Fig. 6.7b), fracturing begins before the wellbore pressure can exceed pc,0. This prevents

essentially all flow into the porous formation, and the wellbore pressure is immediately sta-

bilized at ∼ pc,0. For all cases, fractures continue to propagate until they reach the system

boundary, at which point the pressure drops rapidly as noted in Section 6.1.5.

In this section we reduced the inherent complexity of the model’s capillary force terms

Fc,i (Eqns. 2.89-2.90) into a simple set of intuitive verifications. The quantitative agreement

between these two analytical cases and their corresponding numerical simulations validate

the implementation of the impact of capillary pressure effects on the mechanics of a ductile

porous solid within our model.

6.2 Illustrative Applications

Having verified and tested the model, we now proceed with two illustrations that demon-

strate how hybridBiotInterFoam enables the simulation of relatively complex coupled mul-

tiphase multiscale systems. The following cases serve as illustrative examples of our model’s

features and capabilities as well as tutorial cases within the accompanying toolbox.

6.2.1 Elastic Failure in Coastal Barriers

Coastal barriers are ubiquitous features in coastal infrastructure development. When de-

signed appropriately, these structures can be very effective in regulating water levels and pro-

tecting against inclement weather (Morton, 2002). However, accurate prediction of the cou-

pled fluid-solid mechanics of these structures (which can lead to barrier failure) is inherently

challenging as it requires modeling large-scale features (waves) while also considering small-

120



scale viscous and capillary interactions within the barrier.

The following case represents the continuation of the three-dimensional coastal barrier

illustration presented in Chapter 5 with the addition of linear-elastic poromechanics. As

such, the simulation was created by initializing a heterogeneous porosity field (with k0 =

2× 10−8 m2 and ϕf = 0.5) in the shape of a barrier within a 8.3 by 2.7 by 0.25 m rectangu-

lar grid (1600 by 540 by 50 cells). The relevant solidmechanics parameters wereE = 5MPa,

ν = 0.45, and ρs = 2350 kg/m3. Relative permeabilities and capillary pressures were evalu-

ated through the Van Genuchten model withm = 0.8 and pc,0 = 1 kPa. Before the start of

the simulation, the water level was set to partially cover the barrier and then allowed to equi-

librate. A single wave was then initialized at t = 0. This results in a simulation that exhibits

a clear wave absorption cycle that gradually dissipates in time, as seen in Figure 6.8. Detailed

discussion on the fluid mechanics of this problem can be found in Chapter 5 and Carrillo

et al. (2020).

Here, however, we are interested in evaluating the barrier’s propensity to failure. We do

this by applying the Von Mises yield criterion, which is commonly used to predict material

failure in elastic systems. It states that if the second invariant of the solid’s deviatoric stress

(theVonMises stress) is greater than a critical value (the yield strength) thematerial will begin

to deform non-elastically (Von Mises, 1913). Although we do not specify said critical value

within our simulations, we can map the time-evolution of Von Misses stresses within the

coastal barrier as a result of a wave absorption cycle (Figure 6.8). Our results illustrate the po-

tential utility of our simulation framework in predicting the location and time-of-formation

of stress induced defects within coastal barrier as a function of wave characteristics, perme-

ability, and barrier geometry.
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Figure 6.8: Waves crashing against a poroelastic coastal barrier. Here, the thin black line represents the water‐air in‐
terface (αw = 0.5) and red‐blue colors outside the coastal barrier represent water and air, respectively. Colored
contours within the barrier are the calculated Von Mises stresses and are shown in 5 kPa increments in the general
downwards direction. Note that the largest stresses are seen during the initial wave crash and increase towards the base
of the barrier due to gravitational effects.

6.2.2 Flow-Induced Surface Deformation

Surface deformation due to subsurface fluid flow is a common geological phenomenon oc-

curring in strongly coupled systems and has clear implications in studies related to induced

seismicity (Shapiro & Dinske, 2009), CO2 injection in the subsurface (Morris et al., 2011),

land subsidence (Booker & Carter, 1986), and the formation of dykes and volcanoes (Ab-

delmalak et al., 2012; Mathieu et al., 2008). In order to properly model these systems, it is

necessary to be able to capture the time-evolution of surface uplift, cracks, and hydraulic frac-

tures, as well as the effects that these features have on the overall flow field. Here, we use the
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terms hydraulic fracture vs. crack to refer to solid failure at vs. away from the injected fluid,

respectively.

This illustrative casewas inspired by the experiments reported byAbdelmalak et al. (2012),

where the authors injected a highly viscous fluid into a dry silica powder in a Hele-Shaw

cell in order to study the impact of hydraulic fractures on surface deformation, e.g., during

the creation of volcanic structures. The system also bears some analogy to situations involv-

ing the injection of fluids into subsurface reservoirs, e.g., during geologic CO2 sequestration

(Rutqvist, 2012). The base case of our simulations consists of an impermeable rectangular

container (50 by 30 cm, 500 by 300 cells) that is open to the atmosphere, is partially filled

with a dry porous medium (ϕs = 0.6 ± 0.05, ρs = 2650 kg/m3, k0 = 5× 10−11 m2), and

has an injection well at its lower boundary that injects water at q = 6.5ml/s (Fig. 6.9). To

account for irreversible solid deformation, the porous medium is modeled as a plastic with

a kinematic yield stress τ0 = 0.22 m2/s2. The solid is represented as impermeable to the

invading fluid through the use of the Van Genuchten model withm = 0.05 and pc = 0.

Then, using this base case as a standard, we individually varied each of the main parameters

(q, k0, τ0, m, ϕs, µwater) over several simulations in order to model the resulting solid

deformation processes: fracturing, cracking, surface uplift, and subsidence (Figure 6.9).

The resulting cases demonstrate that cracking (solid failure away from the injected fluid)

is strictly dependent on the number and orientation of existing hydraulic fractures, as it only

occurs when there is more than one fracture branching off from the main injection point

(Figure 6.9B, C, D, H, and I). This is likely because in cases presenting a single vertical frac-

ture solid displacement is almost exclusively perpendicular to the fracturing direction, lead-

ing to virtually no surface deformation or cracking (Figure 6.9A, E and M). Contrastingly,
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Figure 6.9: Study of the effects of hydraulic fracturing and cracking on surface deformation. (A‐I) Representative cases
showing the effects of changing permeability k0 (purple), solid yield stress τ0 (green), injection rate q (brown), and
injected fluid viscosity µ (red) on surface deformation. The blue and yellow subsections contain the results of increasing
or decreasing the controlling parameters, respectively. (J‐L) Time evolution of the fracturing base case. (M) Surface
subsidence example. The difference between the base case (E) and all other simulations is shown in each case’s legend.
Dotted white lines represent the surface height of the initial solid fraction configuration. Note that the color scheme in
all simulations is the same as in Figure 6.4.

the creation of inclined fractures exerts vertical forces on the solid, resulting in surface uplift

and crack formation. The above diagram strongly suggests that deformation is controlled by

the balance between viscous and structural forces: larger fractures occur within softer solids

with higher momentum transfer, and smaller fractures occur in tougher solids with lower
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momentum transfer. As stated above, a comprehensive examination of the parameters that

control solid fracturing will be the focus of Chapter 7.

In addition to the surface uplift presented above, subsurface subsidence is observed in the

simulated system in conditions where the porous solid is rendered permeable to the invad-

ing fluid (i.e., m ≫ 0.05). This phenomenon is not primarily controlled by momentum

transfer, but rather by a gravitational effect whereby the displacement of air by water within

the porous medium around the advancing hydraulic fracture renders the solid-fluid mixture

heavier. Once it is heavy enough to overcome the plastic yield stress, the solid sinks and com-

presses around the fluid source (Figure 6.9M).

6.3 Conclusions

Throughout this chapter and its predecessors, we have shown that our modeling framework

is flexible and readily applicable to a large variety systems: from single-phase flow in static

porous media, to elastic systems under compression, to viscosity- or capillarity-dominated

fracturing systems, all the way up to multiscale wave propagation in poroelastic coastal bar-

riers. We invite the interested reader to tune, adapt, and expand the present illustrative sim-

ulations, which are included in the accompanying CFD toolbox.

Lastly, we would like to note that this framework cannot be applied to every multiscale

system, at it is based on strong assumptions of lengths-scale separation, sub-volume homo-

geneity, Eulerian descriptions, and relatively small elastic deformations. These assumptions

come with their own limitations. A thorough discussion on the model’s constraints and fu-

ture work can be found in Chapter 9.
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The most exciting phrase to hear in science, the one that

heralds the most discoveries, is not ‘Eureka!’ but ‘That’s

funny…’

Isaac Asimov

7
Capillary and Viscous Fracturing During

Drainage in Porous Media

In this chapter, we use theMultiphase DBB framework to study the transition from uni-

form fluid invasion to capillary and viscous fracturing during drainage in porous media. To
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do so we examinemultiphase flow in deformable porous media in a broad range of flow, wet-

tability, and solid rheology conditions. We then demonstrate the existence of three distinct

fracturing regimes controlled by two non-dimensional numbers that quantify the balance of

viscous, capillary, and structural forces in a porous medium. We then use these parameters

to establish a first-of-its-kind phase diagram for material failure caused bymultiphase flow in

poroplastic media. Lastly, we examine the effects of compaction on said dimensional num-

bers and the system’s propensity to fracture. This chapter is adapted from Carrillo & Bourg

(2021a).

7.1 Introduction

Multiphase flow in deformable porousmedia is a ubiquitous phenomenon in natural and en-

gineered systems that underlies key processes in water and energy resource engineering and

materials science, includingmembrane filtration, soil wetting/drying, unconventional hydro-

carbon recovery, and geologic carbon sequestration (Bächer &Gekle, 2019; Räss et al., 2018;

Towner, 1987). A key obstacle to more accurate representations of this phenomenon is our

limited understanding of the transition from fluid invasion to flow-induced fracturing, i.e.,

material failure caused by multiphase flow. In large part, this limitation is caused by a lack of

computational approaches capable of representing multiphase flow in fractured deformable

porous media.

Previous work onmultiphase flowwithin static porousmedia is extensive and includes de-

tailed examinations of the influence of wettability, viscosity, and flow rate on flow in unsatu-

rated porous media at multiple scales. In particular, existing studies have demonstrated how

capillary forces give rise to differences between drainage and imbibition (Lenormand, 1986);
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how the ratio of fluid viscosities controls the stability of the invading fluid front (Måløy et al.,

1985; Saffman & Taylor, 1958; Stokes et al., 1986); and how the magnitude of the capillary

number delineates distinct flow regimes (Ferer et al., 2004; Yortsos et al., 1997;Datta&Weitz,

2013; Lu et al., 2020). Each of the aforementioned controls is highly dependent on the sys-

temof interest. This complicates efforts to develop general relative permeability and capillary

pressuremodels that apply tomost systems of interest (Picchi&Battiato, 2018, 2019; Brooks

& Corey, 1964; van Genuchten, 1980).

Flow of a single fluid phase through deformable porous media also has been studied in

depth. Numerical modeling studies are largely based on the work of Biot and Terzaghi (Biot,

1941; Terzaghi, 1943) and have been used to reproduce the behavior of arteries, boreholes,

swelling clays, and gels (Auton &MacMinn, 2017; Bertrand et al., 2016; Carrillo & Bourg,

2019;MacMinn et al., 2015). In the last decade, fundamental studies have generated detailed

information on the dynamics that arise from fluid-solid couplings beyond the ideal poroelas-

tic regime, including fracturing, granular fingering, and frictional fingering (Campbell et al.,

2017; Sandnes et al., 2011; Zhang et al., 2013). In particular, these studies have shown that

the main parameters controlling the deformation of a porous solid by single phase flow are

thematerial softness and themagnitude of the fluid-solidmomentum transfer (Sandnes et al.,

2011).

The study ofmultiphase flow in a deformable porousmedium is inherently more complex

than the problems outlined above, as it requires simultaneous consideration of capillarity,

wetting dynamics, fluid rheology, and solid deformation. Deformation modes associated

with material failure (i.e., multiphase fracturing) are particularly challenging as they require

simultaneous representation of multiphase flow in fractures and in the surrounding porous
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matrix. The existing detailed examinations of this phenomenon have focused exclusively on

granular systems. Notably, Holtzman& Juanes (Holtzman& Juanes, 2010; Holtzman et al.,

2012) used experiments and discrete element models to demonstrate that the transitions be-

tween capillary fingering, viscous fingering, and fracturing during multiphase flow in granu-

lar media reflect two non-dimensional numbers: a fracturing number (ratio of fluid driving

force to solid cohesive force) and a modified capillary number (the ratio between viscous and

capillary pressure drops). Other discrete element approaches have shown that fracturing is

highly dependent on the invading fluid’s capillary entry pressure (Jain& Juanes, 2009;Meng

et al., 2020). However, it is not clear how these conclusions translate to continuous non-

granular systems.

To the best of our knowledge, no experimental or numerical investigation has simultane-

ously explored the effects of flow rate, wettability, and deformability during multiphase flow

in deformable porous media at the continuum scale and identified the controlling parame-

ters that relate all three properties within a single phase diagram. Here, we use simulations

carried out with our new Multiphase Darcy-Brinkman-Biot (DBB) framework (Carrillo &

Bourg, 2021b) to fill this knowledge gap and identify non-dimensional parameters that gov-

ern viscously-stable fluid drainage and fracturing in deformable porous media. We also find

that the fracturing dynamics predicted by our continuum-scale framework is consistent with

those observed or predicted for granular systems. In other words, in systems with a large

length scale separation between pores and fractures, volume-averaged properties are suffi-

cient to capture the onset and propagation of fractures at the continuum scale.
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7.2 Numerical Simulations

7.2.1 Crossover from Imbibition to Fracturing in aHele-ShawCell

In addition to the derivation and extensive quantitative validation of the modeling frame-

work,Chapter 6 included a qualitative validation of the ability of theMultiphaseDBBmodel

to predict the transition from invasion to fracturing during multiphase flow. Briefly, this

validation replicated experiments byHuang et al. (2012b) involving the injection of aqueous

glycerin into dry sand at incremental flow rates within a 30 by 30 by 2.5 cm Hele-Shaw cell.

As shown in Fig. 7.1, these experiments are inherently multiphysics as fluid flow is governed

by Stokes flow in the fracture (aperture∼cm) and by multiphase Biot Theory in the porous

sand (pore width∼ 100µm).

Figure 7.1: Continuous transition from fluid imbibition to fracturing in a Hele‐Shaw cell. Experimental images (A, B,
C) were taken from Huang et al. (2012b) and numerically replicated using equivalent conditions (D, E, F). Black lines
represent the advancing saturation front. Additional cases can be found in Chapter 6.
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As discussed inChapter 6, the similarities between ourmodel and the experimental results

are evident: as the viscous forces imposed on the solid increase, so does the system’s propen-

sity to exhibit fracturing as the primary flowmechanism (as opposed to imbibition). Minor

microstructural differences between our simulations and the experiments reflect the manner

in which the implemented continuum-scale rheology model approximates the solid’s gran-

ular nature. It is clear, however, that both systems are controlled by the balance between

viscous forces and solid rheology at the scale of interest (Carrillo & Bourg, 2021b). As such,

these experiments present an ideal starting point for our investigation.

7.2.2 Creation of Fracturing Phase Diagrams

Here, we use the same simulationmethodology developed in (Carrillo & Bourg, 2021b) and

illustrated in Figure 7.1 to identify the general non-dimensional parameters that control the

observed transitional behavior between invasion and fracturing in a plastic porous medium.

Todo so, we systematically vary the solid’s porosity (ϕf =0.4 to 0.8), density-normalized plas-

tic yield stress (τyield = 1.5 to 24m2/s2), capillary entry pressure (pc,0 = 100 to 50, 000 Pa),

andpermeability (k =1×10−13 and5×10−9m2) aswell as the invadingfluid’s viscosity (µn =

0.5 to50 cP) and injection rate (U f =1×10−4 to8×10−2m/s). As inourpreviouswork, the

solid’s porosity was initialized as a normally-distributed field, the deformable solid was mod-

eled as aHershel-Bulkley-Quemada plastic (Spearman, 2017; Quemada, 1977), the porosity-

dependence of permeability was modeled through the Kozeny-Carman relation, and relative

permeabilities where calculated through the van-Genuchten model (van Genuchten, 1980).

Further details regarding the base numerical implementation of this model can be found in

Carrillo & Bourg (2021b) and the accompanying code (Carrillo, 2020a). The only major
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differences relative to our previous simulations are that we now include capillary effects and

represent viscously-stable drainage as opposed to imbibition (i.e., the injected glycerin is now

non-wetting to the porousmedium). A representative sample of themore than 400 resulting

simulations is presented in the phase diagrams shown in Fig. 7.2.

Overall, the results make intuitive sense. Figure 7.2A shows that, ceteris-paribus, less per-

meable solids are more prone to fracturing. This is due to the fact that, given a constant

flow rate, lower permeability solids experience greater drag forces. Our results also show that

solids with lower plastic yield stresses fracture more readily, as their solid structure cannot

withstand the effects of relatively large viscous or capillary forces. The y-axis behavior of Fig.

7.2B further shows that systems with higher entry pressures are more likely to fracture, i.e.,

the capillary stresses are more likely to overwhelm the solid’s yield stress, in agreement with

grain scale simulations (Jain & Juanes, 2009). Finally, Fig. 7.2B also shows that higher injec-

tion rates lead to more fracturing, as these increase viscous drag on the solid structure.

7.3 Characterization of FracturingMechanisms

The deformation regimes observed in the previous experiments can be delineated by defining

two simple non-dimensional parameters that quantify the balance between viscous pressure

drop, solid softness, and capillary entry pressure.

NvF =
∆p

τyieldρs
=

µUrin
kτyieldρs

ln
(
rout
rin

)
(7.1)

NcF =
pc,0

τyieldρs
=

2γ

rporeτyieldρs
(7.2)

132



Figure 7.2: Phase diagrams describing the effects of varying permeability, plastic yield stress, fluid injection rate, and
capillary entry pressure on the transition from fluid drainage to fracturing. All cases are at ϕs = 0.60 ± 0.05 and
µn = 5 cP. The remaining parameters are case‐specific and can be found in each figure’s upper legend. The areas
separated by thin blue lines highlight and label the four deformation regimes described in Section 7.3. The vertical red
lines represent where these diagrams intersect in 3‐dimensional space. The color scheme is the same as in Fig. 7.1.
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Here, the viscous fracturing number (NvF ) represents the ratio between the viscous pres-

sure drop and the solid’s structural forces. It embodies the question: Does fluid flowgenerate

sufficient friction to induce fracturing? As shown in Fig. 7.3, the answer is no ifNvF < 1

andyes ifNvF > 1.This number is the continuumscale analog to the fracturingnumberpre-

sented byHoltzman et al. (2012) for granular solids. It also explains the experimental finding

by Zhou et al. (2010a) that fracture initiation is only a function of the resulting fluid pressure

drop, irrespective of the injection rate or fluid viscosity used to create it. Furthermore, it il-

lustrates why increasing the injection rate and decreasing the permeability have similar effects

in Fig. 7.2.

Complementarily, the capillary fracturing number (NcF ) represents the ratio between the

capillary entry pressure and the solid’s structural forces; it embodies the question: Doesmul-

tiphase flow generate sufficient capillary stresses to fracture the solid? Figure 7.3 shows that

whenNcF < 1 drainage is the preferential flow mechanism and whenNcF > 1 fracturing

becomes the dominant phenomenon.

This analysis yields the rudimentary conclusion that fracturing should occur if either of

the fracturing numbers is greater than unity, as confirmed by our simulations. However, our

simulations further demonstrate the existence of three distinct fracturing regimes (Figs. 7.2-

7.3). The first regime, referred here as non-invasive fracturing (NvF > 1 and NcF > 1) is

characterized by fracturing of the porous solid with minimal fluid invasion, where fractures

precede any invasion front. In the second regime, referred to here as the viscous fracturing

transition (NvF > 1 andNcF < 1), only the viscous stresses are sufficiently large to fracture

the solid. This leads to the formation of relatively wide fractures enveloped and preceded by

a non-uniform invasion front. Finally, in the third regime, referred to here as the capillary
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Figure 7.3: Fluid invasion and fracturing in plastic porous media as a function of the viscous fracturing numberNvF

and the capillary fracturing numberNcF . Green triangles denote uniform invasion, red diamonds denote the tran‐
sitional fracturing regimes, and blue circles denote non‐invasive fracturing. The four image insets are representative
samples of each fracturing regime.

fracturing transition (NvF < 1 and NcF > 1), only the capillary stresses are sufficiently

large to fracture the solid. Given a constant injection rate, this leads to the formation of

fractures preceded by an invasion front, as in the viscous fracturing transition regime, but

with amoreuniform saturation front (due to lower viscous stresses) and less solid compaction

(hence narrower fractures). We note that the crossover between each of the four regimes is

continuous, meaning that systems withNvF orNcF ∼ 1 can share elements of neighboring
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regimes.

Although NvF and NcF are fairly intuitive numbers, their impacts on fracture propaga-

tionmechanisms are not. For this reason, we also studied the dynamics of fracture nucleation

and growth and the evolution of the solid’s strain for all three fracturing regimes. As seen in

Fig. 7.4, fracturing in the two transition zones is characterized by the initial formation of

non-flow-bearing failure zones (hereafter referred to as cracks), which function as nucleation

sites for propagating flow-bearing fractures. These cracks are formed by the simultaneous

movement of large contiguous sections of the porous medium in different directions, a pro-

cess induced by uniform fluid invasion into the porous medium. However, the similarities

between both transition zones end here. In the viscous fracturing transition regime, frac-

tures quickly become the dominant deformation mechanism, localizing the majority of the

stresses and solid compaction around the advancing fracture tip. Conversely, in the capillary

fracturing transition regime, fluid-invasion continues to serve as the main flow mechanism

and source of deformation, where fractures and cracks are slowly expanded due to the more

evenly-distributed capillarity-induced stresses localized at the advancing invasion front. Fi-

nally, non-invasive fracturing follows a different process, where there is little-to-no crack for-

mation and fracture propagation is the main source of deformation and flow. Here, the co-

advancing fracture and saturation fronts uniformly compress the solid around and in front

of them until this deformation reaches the outer boundary of the simulated system (see the

“jet” like-structures at fracture tips in Fig. 7.4C.)
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Figure 7.4: Dynamic fracture formation mechanisms. Each row represents the time‐dependant fracture formation
process for each fracturing type, where time advances from left to right. Here, the red‐blue color scheme represents the
log‐normalized strain‐rate magnitude specific to each simulated case, fractures are shown in white and the advancing
fluid‐fluid interface is shown as a thin black line.

7.4 Influence of Localized and UniformDeformation

So far we have explored how independently changing k, pc, and τyield (among others) can

affect the fracturing of plastic materials. However, our results also have implications for sit-

uations in which these variables are all varied simultaneously, such as during the compaction

of soils, sediments, or viscoplastic sedimentary rocks (i.e. mudstones or clay-shales). In such

situations, with increasing compaction, k−1, pc, and τyield should all increase, although at

different rates. As such, we now study the effects of local and uniform deformation on the

outlined fracturing regimes.
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7.4.1 Localized Deformation

The simulations presented abovewere carried out using the simplifying assumption that pc is

invariant withϕf (whereas k and τyield are not). To evaluate the impact of this simplification

on the results shown inFigs. 7.2-7.3, we carriedout additional simulations for all four regimes

with a deformation-dependent capillary entry pressure based on a simplified form of the Lev-

erett J-function where pc,0 = p∗c,0(ϕs/ϕ
avg
s )n, p∗c,0 is the capillary pressure at ϕs = ϕavg

s , and

n > 0 is a sensitivity parameter (Leverett, 1941; Li & Benson, 2015). The results show that

non-zero values of n promote the creation of finger-like instabilities and the nucleation of

cracks at the fluid invasion front, particularly in the capillary fracturing transition regime.

Simulation predictions with different n values are shown in Fig. 7.5.

Despite the additional complexity of the resulting fluid invasion and fracturing patterns,

results with n > 0 conform to the overall phase diagram presented in Fig. 7.3. The results at

n = 0 are therefore highlighted in the previous sections due to the greater simplicity of their

fluid and solid distribution patterns.

7.4.2 UniformDeformation

Having verified that the applicability of the fracturing numbers holds for systems were k,

τyield, and pc all vary with ϕf , we now examine the effects of uniform compaction on said

numbers. A direct analysis using the widely-used porosity-parameter relationships imple-

mented above (the Kozeny-Carman relation for k, Leverett J-Function for pc, andQuemada

model for τyield (Leverett, 1941;Quemada, 1977; Spearman, 2017)) yields the following frac-
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Figure 7.5: Influence of the ϕf ‐dependence of pc on fluid invasion and fracturing patterns for all three fracturing
regimes. Here, n represents the sensitivity parameter in the Leverett J‐function analogue presented above. The color
scheme is the same as in Fig. 7.1.

turing number - porosity dependence:

NvF ∝ (1− ϕf )
2−D(1− ϕf,min/ϕf )

ϕ2
f

(7.3)

NcF ∝ (1− ϕf )
2−D(1− ϕf,min/ϕf ) (7.4)

where D is a rheological parameter based on the solid’s fractal dimension (common values

range for 1.7-2.9 for different clayey sediments (Spearman, 2017)) and ϕf,min is the max-
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Figure 7.6: Fracturing numbers’ dependence on Porosity. A) ForNvF B) ForNcF . Colored arrows represent the over‐
all trends in the fracturing number behaviours when changing the fractal parameterD and the minimum porosity pa‐
rameter ϕf,min in Eqns. 7.3‐7.4. Note the appearance of “valleys” at high values of D in sub‐figure A.

imum possible degree of compaction. Through these relations, we can see that uniform

compaction (or expansion) has a highly non-linear effect on fracturing. Equations 7.3-7.4

indicate that whereas NcF tends to consistently decrease with increasing compaction, NvF

is considerably more susceptible to changes in ϕf and exhibits multiple changes in the sign

of its first derivative when D > 2, non-intuitively suggesting that fracturing can be either

induced or suppressed through uniform compression. Plots ofNvF andNcF as a function

of solid fraction are shown in Fig. 7.6.

7.5 Conclusions

In this chapter, we used the Multiphase DBB modeling framework to create a phase dia-

gram that identifies two non-dimensional parameters that categorize the crossover between

viscously-stable fluid drainage and fracturing as a function of wettability, solid deformabil-

ity, and hydrodynamics. To the best of our knowledge, our results are the first to relate all
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three of these properties to characterize multiphase flow in viscoplastic porous media. As

expected intuitively, we observe that fracturing occurs if the viscous and/or capillary stresses

are sufficient to overcome the solid’s structural forces. Thus, when it comes to systems with

multiple fluids, it is necessary to consider the effects of surface tension, wettability, and pore

size on the fluids’ propensity to fracture or invade the permeable solid. Furthermore, we

found that the two non-dimensional fracturing numbers described above delineate the exis-

tence of three fracturing regimes with distinct fracture propagation mechanisms. Lastly, we

examined how uniform compression or expansion affect said non-dimensional numbers and

a system’s propensity to fracture .
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Science without religion is lame, religion without science is

blind

Albert Einstein

8
Simulation and Prediction of Stochastic

Clogging Processes in Porous Media

In this chapter, we take a small detour from modeling multiphase flow in deformable

porousmedia to focus on a conceptually simple, yet physically complex phenomenon: Clog-
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gingmechanics in porousmedia. This workwas done as part of Princeton’sCenter for Statis-

tics andMachine Learning (CSML) graduate certificate program. Although this chapter has

not been published yet, we hope to do so in the near future.

8.1 Introduction

The erosion, transport, and eventual deposition of fluid-suspended particles is ubiquitous

within both natural and engineered porous systems. These processes control the evolution of

sedimentary formations, the distribution of contaminants in the environment, and the clog-

ging of porous media, pipes, and arteries (Molnar et al., 2015; Phenrat et al., 2009; Robert

De Saint Vincent et al., 2016; Zuriguel et al., 2014). Although material transport in porous

media is relatively well understood, the topics of particle deposition, accumulation, and clog-

ging are still relatively new in the field.

The difficulty of predicting clogging in porous media arises from the complexity, hetero-

geneity, and stochastic nature of the relevant systems. Clogging in porous media is notori-

ously hard to probe and characterize, as it is necessary to account for each system’s 3D ge-

ometry, grain size distribution, pore size distribution, rock/fluid chemistry, particle size, and

even surface charge (Ding et al., 2015; Sahimi& Imdakm, 1991; Liu et al., 1995;Gerber et al.,

2018;Mirabolghasemi et al., 2015; Pham&Papavassiliou, 2017). Added to these spatial chal-

lenges is the fact that clogging is also a temporal process. Clogging mechanisms often don’t

reach a steady state: Clogs can form, redirect fluid fields, change pressure gradients, break,

and form again downstream (Bizmark et al., 2020).

Experimentalists have taken two separate routes in addressing these challenges. The first

approach attempts to characterize particle deposition and clogging by reducing the complex-
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ity of the studied systems through the creation of simplifiedmicro-models (Wyss et al., 2006;

Agbangla et al., 2012; Auset & Keller, 2006; Gerber et al., 2019). This allows a measure of

control of a handful of relevant variables (fluid flow rate, particle size, pore size, flow time)

while significantly constraining others (flow path complexity and material heterogeneity).

These studies have yielded noteworthy results. In particular, they have shown that clogging

scales as a function of the pore to particle size ratio and that, under certain conditions, it is

independent of particle injection rate and system porosity (Wyss et al., 2006). However, it is

not clear if these conclusions still hold for more complex natural systems.

The second approach relies on using advanced imaging techniques to probe real porous

systems (or close approximations to them). These often rely on computed X-ray micro-

tomography (XCT) and/or confocal microscopy. The former has taken a key role in char-

acterizing particle aggregate formation in natural rock samples and identifying their depen-

dence on fluid chemistry and rock geometry (Liu et al., 1995; Li et al., 2006b,a; Chen et al.,

2009). However, although highly informative, this technique suffers from not having large

enough fields-of-view or high enough temporal resolutions. Confocal microscopy takes ad-

vantage of the fact that it is possible to match the refractive index of an artificial porous

medium with the index of its permeating fluid phase in order to “see” through the whole

solid-fluid mixture. This technique has allowed scientists to characterize particle deposition

and clogging as a function of time while having a high level of control of the relevant flow

variables and material characteristics (Bizmark et al., 2020; Mays et al., 2011).

However, all experimental studies suffer from the same practical problem: they cannot

probe the full parametric phase-space required toproperly generalize their results tonaturally-

occurring porous media due to the difficulty of creating and running an experiment with
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more than 3-5 independent variables. The necessity to investigate a larger range of systems

is evidenced by the fact that experimental studies often reach conflicting conclusions. For

example, some studies maintain that particle transport suppresses fluid flow by reducing the

permeability of porousmedia (Civan, 2010; Liu et al., 1995;Wiesner et al., 1996), while oth-

ers state that particles can actually help enhance flow (Weber et al., 2009; Kersting et al., 1999;

Ryan & Elimelech, 1996; Schneider et al., 2021). Even so, assuming that we could obtain a

large-enoughdata set, there is no guarantee thatwe couldderive general relationships between

variables: some conclusions may only hold at low flow rates and/or low grain heterogeneity,

while others may only hold at low fluid viscosities and/or high particle concentrations. One

way to address this problem is through the application ofMachineLearning (ML) algorithms

to analyze such large data sets. These approaches have been shown to learn and predict com-

plex relations in a wide variety of fields, from predicting fluid turbulence in jet engines (Sirig-

nano et al., 2020) to enabling image recognition in autonomous vehicles (Kocić et al., 2019).

These models, however, require highly extensive data sets to become effective predictors.

Fortunately, due to the rise of large-scale parallelized cloud computing, it is nowpossible to

run thousands of particle transport simulations in order to systematically study 10-20 dimen-

sional parametric phase spaces. However, to the best of our knowledge, there have not been

any studies that have used numerical models for this purpose. Current popular approaches

rely on continuum-level (i.e. volume averaging) approximations such as filtration theory to

study particle deposition (Molnar et al., 2015;Messina et al., 2016; Boccardo et al., 2018) and

erosion (Hilpert & Johnson, 2018; Jäger et al., 2017). Contrastingly, coupled CFD-DEM

approaches (Zhao & Shan, 2013; Mirabolghasemi et al., 2015; Zuriguel et al., 2014; Natsui

et al., 2012) attempt to model particle deposition directly through careful consideration of
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coupled particle-fluid mechanics and direct numerical simulations (DNS). However, due to

their complexity and relatively-high computational cost, very few studies have attempted to

model particle mechanics through these means.

In this chapter, we leverage Princeton’s University’s large computational resources in or-

der to explore the underlying principles that control clogging mechanics. In particular, we

explore the feasibility of using ML approaches to create a computational tool that can pre-

dict clogging a-priori and that can be used to improve and streamline the design process of

engineered porous systems. To do so, we ran 2000 CFD-DEM simulations in randomly-

generated porous geometries while systematically varying 12 of the system’s design parame-

ters (pore size, pore size heterogeneity, grain size heterogeneity, particle size, particle-particle

attraction, particle-wall attraction, particle flux, porosity, system size, fluid velocity, and fluid

viscosity). The resulting cases where labeled and analyzed in order to train and evaluate sev-

eral differentML classifiers and regressors, which we then used to predict clogging in equiva-

lent systems. Then, through model optimization, we identified which training features were

most indicative of clogging in heterogeneous porous media. To the best of our knowledge,

this is the first timeMLapproaches have been successfully used to reliably predict and control

clogging processes.

8.2 Methods

8.2.1 CFD-DEM

Our numerical simulations where performed on the CFDEM® computational modeling

framework,which couplesComputational FluidDynamics (CFD) simulations performed in

OpenFOAM®with Discrete Element Models (DEM) performed in LIGGGHTS®. Both
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C++ libraries are free-to-use, open-source, and parallelizable platforms. OpenFOAM® uses

the Finite Volume Method to discretize and solve partial differential equations to describe

fluid motion in complex 3-D grids. In turn, LIGGGHTS® uses Lagragian approaches and

discrete particle models to describe the motion and interaction of a large number of individ-

ual particles within a grid-free environment. The object-oriented structure of both codes and

multitude of supporting libraries allows the user to easily customize each simulation’s setup

with different numerical discretization schemes, time-stepping procedures, matrix-solution

algorithms, and supporting physical models.

Figure 8.1: Conceptual representation of the models we used for clogging simulation and prediction.

CFDEM® successfully couples both models through an iterative algorithm that super-

imposes their physical domains. Here, an additional particle-drag term is added to the fluid’s

momentumconservation equation to account forparticlemovement, and an additional fluid-

drag term is added to each particle’s equation ofmotion to account for fluid-inducedmotion

(i.e. flow and buoyancy). Eachmodel can probe its counterpart at any givenmoment in time,

atwhich point theCFDEM® algorithm iterates over both solver’s solutions until the desired

convergence metric is reached. Just as in its two base models, CFDEM® counts with several

customizable options regarding the coupling frequency, numerical schemes, and coupling-
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physical models. Our specific numerical implementation will be discussed in Section 8.4.2.

8.2.2 Machine Learning

The statistical andML analysis performed in this study was carried out through Scikit-learn,

a free-to-use, python-based library. Sckikit-learn was selected for its ability to allow users to

easily train, optimize, and interpret a large number of supervised and unsupervised machine

learning algorithms. More complex and customizable ML libraries such as TensorFlow and

pyTorch would have been equally adequate. In our case, since we worked exclusively with

labeled data, we only focused on training and testing a representative sample ofML classifiers

and regressors (see Tables 8.1 and 8.3).

8.3 Workflow

Having established the numerical simulation andML basis of our investigation, we now de-

scribe our project workflow: First, we created randomized porous systems. In this step, we

generated the geometry and computationalmesh onwhichwe performed our numerical sim-

ulations. A combination of randomization and systematic-variation of the relevant geomet-

ric variables (e.g. pore size) was necessary for the eventual generalization of our results. Sec-

ond, we ran CFDEM simulations. During this step, we ran thousands of clogging processes

over a large parameter space by varying the specified fluid and particle variables (e.g. fluid

flow rate and particle size). Third, we identified clogged systems by developing a standard-

izedmetric for labeling and characterizing our completed numerical simulations. Fourth, we

identified and engineered features for training. In this step, we converted the varied system

parameters into a set of standardized non-dimensionalized variables. This was done for two
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reasons: it reduces redundancy and creates more predictive features (e.g. the ratio between

particle size and pore size is a better predictor for clogging than either variable by itself) while

also allowing us to apply the resulting ML model to any potential system that can be simi-

larly non-dimensionalized. Fifth, we trained the ML models. Here, we trained, optimized,

and identified the bestML classifier and regressor for predicting our simulated clogging pro-

cesses. Finally, we interpreted and analysed the models. In other words we identified the

most predictive features for particle clogging in porous media. In addition, we also evaluated

the efficacy of different models, their shortcomings, and their potential improvements.

The rest of the chapter will focus on developing and discussing each of these individual

steps.

8.4 Experimental Setup

8.4.1 Creating Randomized Porous Systems

The randomized porous geometries used in this study were generated through a custom

Matlab® script which allowed us to specify the following criteria: average grain size, grain

size standard deviation, average pore size (i.e. shortest distance between two given grains),

pore size standard deviation, and porosity (see Figure 8.2). Note that, for simplicity, all grains

where assumed to be cylindrical in shape and the domain’s length andwidthwhere kept con-

stant at 50 cm. Given a fixed domain space, the porosity and pore size distribution become

coupled variables, which is why only one of these could be specified for a given geometry

(the other one wasmeasured at the end of geometry generation). Furthermore, to allow for a

measurable particle flux into the geometry, a funnel-type feature was added to the top of the

generated geometry during the numerical simulation setup (see Figure 8.2C). The result is
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an algorithm that can generate well-characterized, yet randomized porous systems on which

we can perform our numerical simulations.

Figure 8.2: A,B) Examples of randomly‐generated porous media configurations with different grain sizes and porosities.
C) Example of the numerical mesh and simulation setup. Here, the areas within the cylinders (i.e. grains) are removed
during meshing to making them inaccessible to fluids and particles. Also note the direction of flow and the fact that the
only inlets and outlets are at the upper and lower boundaries of the geometry, respectively.

8.4.2 CFDEM Simulations

We now present our numerical simulation setup. As discussed earlier, the main advantage

that numerical simulations have over conventional experiments is their ability to probe large

parameter spaces with ease. As such, we systematically varied the following 12 variables over

the following ranges in 2000 CFDEM simulations:

150



1. Porosity (ϕ): 0.26 to 0.98

2. Average pore size (D): 10−4 to 10−2 m

3. Pore size standard deviation (Dstd): 5× 10−4 to 5× 10−3 m

4. Average grain size (G): 10−3 to 5× 10−2 m

5. Grain size standard deviation (Gstd): 10−3 to 10−2 m

6. Geometric thickness (T ): 10−4 to 10−2 m

7. Particle diameter (d): 10−4 to 10−2 m

8. Particle flux (F ): 102 to 1.2× 104 particles/s

9. Particle-particle attraction (PP ): 0 to 5× 106 J/m3

10. Particle-wall attraction (PW ): 0 to 5× 106 J/m3

11. Fluid velocity (U ): 0 to 1.5m/s

12. Fluid kinematic viscosity (ν): 10−2 to 10−8 m2/s.

All other parameters were kept constant. In particular, fluid density was 1000 kg/m3,

particle density was 1200 kg/m3, and gravity (g = 9.8m/s2) was set to be constant in the

direction of flow. Particle-Particle/Wall attraction was modeled through the SJKR model,

Particle-Particle/Wall collisions where captured through the Granular Hertz model with a

Poisson Ratio of 0.22, and the fluid-particle drag coupling was calculated through the DiFe-

lice Drag model every 0.001 seconds (Barthel, 2008). These models imply the following: A)
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the attraction force is normal to the inter-particle contact area and is only activated once par-

ticles are in direct contact with each other. B) Inter-particle collisions are modeled by defin-

ing both a normal force (spring + damping forces) and a tangential force (shear + damping

forces). This allows particles to both bounce and roll around obstacles and other particles.

C) Fluid-particle interactions are governed by a drag force that is proportional to the rela-

tive velocity between a given particle and the fluid, the solid volume fraction in the specified

control volume, and the square of the Reynolds number (Zhou et al., 2010b).

Figure 8.3: Examples of different clogging simulations. Note the wide range of particle sizes (A and D), porosities (B and
C), pore size distributions (C and D), and grain size distributions (B and C).

In order to avoid modeling trivial clogging cases dictated by size exclusion, we exclusively
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considered systems where the particles’ diameter was less than the pore size and geometric

thickness (See Figure 8.3). Each simulationwas set to run for 5 hydraulic residence times (0.5

m / fluid velocity), which took on average about 5.5 hours of computing time on a 28-core

Broadwell Xeon node.

8.5 Data Analysis andModel Training

8.5.1 Identifying Clogged Systems

Accurate characterisation of our final configurations was crucial for the training and testing

of our ML algorithms. This process was complicated by the fact that clogging in a hetero-

geneous porous medium is not necessarily a discrete state. As shown Figure 8.4, clogging

might only occur at certain pore throats, might not occur at all, or might occur throughout

the porous medium Bizmark et al. (2020). As such, in order to properly label our clogging

geometries for ML classification (or obtain a continuous prediction variable for ML regres-

sion) we had to define an objective metric that could characterize the degree of clogging in

each system. We called this variable the “Clogging Number” (CN).

The Clogging Number (Eqn. 8.1) is the product of two independent factors obtained

at the end of each simulation : 1) The average relative distance between particles (DP). 2)

The symmetry of the particle’s final velocity distribution (SYMM). The significance of the

first factor is fairly intuitive; systems with particles that end up closer together tend to have

a higher degree of clogging. The second factor describes the relative behaviour of all the par-

ticles throughout the porous medium, where relatively high symmetry indicates homoge-

neous particle behaviour (i.e. the system is either fully clogged or fully unclogged) and low

symmetry indicates heterogeneous behaviour (i.e. some particles are moving and some are
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Figure 8.4: Examples of different clogging levels. Each panel in this figure shows the final state of four separate clogging
simulations with identical geometries and flow conditions. Their only difference is the size of the simulated particles
(shown here as the particle size to pore size ratio, d/D, which increases from left to right). A) Free geometry. B, C) Semi‐
clogged geometries D) Fully‐clogged geometry.

stationary).

CN = DP ∗ SYMM (8.1)

Therefore, multiplying both factors together into the CN allows us to characterize each

simulation’s degree of clogging, where DP tells us if the system tends to be clogged or un-

clogged, and SYMM tells us the degree to which they are one or the other. After testing

several different averaging procedures and symmetry measures, the following two metrics

yielded the best performance when used to create a CN that could separate fully clogged

from fully unclogged systems (see Figure 8.5A). DP was calculated by averaging the average

distance between each particle and its closest 50 neighbors, dividing by the particle diameter,

and subtracting 1 from said value (to avoid double counting). In turn, SYMM was deter-

mined by calculating the ratio between the particles’ median velocity and their mean veloc-

ity. This ratio describes the symmetry of the distribution by using the fact that the median

of a sample is independent of changes in its extreme values, while the mean of a sample is.
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Figure 8.5: Clogging sample distribution as a function of the average final distance between particles (DP) and sym‐
metry of the particles’ final velocity distribution. Here, red and blue colors represent clogged and unclogged samples,
respectively. Note that point size is directly proportional to DP and that all cases where plotted from lowest DP to high‐
est DP values for visualization purposes. A) Result of using CN <1 to separate 300 manually‐labelled fully clogged and
unclogged samples. B) Result of using CN <1 to label all data samples. The color contours in both graphs represent the
phase‐space prediction of the optimized MLP classifier trained with their respective samples and discussed in Section
8.5.3.

Therefore, whenever a group of particles form a blockage in an otherwise unclogged geome-

try, the median of the velocity will change at a much slower rate than the mean velocity and
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their ratio will decrease. Conversely, if we have a fully clogged or fully unclogged system, the

velocity distributionwill have a higher degree of symmetry, and this ratio will be close to one.

Figure 8.5 shows that CN now provides us with a suitable way of characterizing the final

state our clogging simulations. It also gives us a straightforward way to form discrete labels

for classification out of continuous variables, where all samples with CN < 1 will be labeled

as “Clogged” (1) and all others as “Unclogged” (0). This threshold was chosen by identifying

the best linear classifier that could separate a sample of 300 manually-labeled fully clogged

and fully unclogged systems (without considering any semi-clogged samples). Applying this

threshold to the complete data set yields 1012 samples classified as Clogged and 988 classified

as Unclogged.

8.5.2 Feature Standardization andNon-dimensionalization

In order to generalize our simulations and improve our models’ prediction power, we now

non-dimensionalize and/or re-scale our training features. The objective is to create a stan-

dardized set of features that can be readily quantified from any system involving the flow of

solid bodies through a set of static obstacles (such as cars through a road, sheep through a

gate, contaminants through soil, ext...). Nondimensionalization also allows us to add infor-

mation to the model by explicitly dictating important relationships between variables. The

following features are all system characteristics than can be measured a-priori, meaning that,

if trained correctly, aMLmodel will be able to use these features to predict clogging without

actually having to run any simulations or experiments.

1. Particle - pore size ratio (d/D): d/D

2. Particle - geometric thickness ratio (d/T ): d/T
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3. Particle - grain size ratio (d/G): d/G

4. Geometric thickness - pore size ratio (T/D): T/D

5. Grain size - pore size ratio (Gnd): G/D

6. Non-dimensional grain size standard deviation (Gstd,nd): Gstd/D

7. Non-dimensional pore size standard deviation (Dstd,nd): Dstd/D

8. Non-dimensional particle-wall attraction (PWnd): PW×π×(D/2)2

(ParticleMass×g)

9. Non-dimensional particle-particle attraction (PPnd): PP×π×(D/2)2

(ParticleMass×g)

10. Standardized particle flux (Fnd): (F ×D)/ϕ

11. Standardized Fluid velocity (Ustd): U/D

12. Logarithm of kinematic viscosity (log(ν)): log10(ν).

The resulting 11 variables where used to train the classifiers and the regressors showcased

in the following sections.

8.5.3 Training and Identifying Best Classifiers

TheMLclassifiers shown inTable 8.1were trained and testedbyusingk-folds cross-validation

(k=5) on all 2000 cases, resulting in training sample of 1600 and a testing sample of 400.

These classifiers were chosen by virtue of their differing approaches, as we had little-to-no

intuition of which one would work best for our purposes (no one has ever used ML to pre-

dict clogging mechanisms). Classifier performance was evaluated by calculating their testing
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accuracy, precision, the area under their Receiving Operating Characteristic (ROC) curve,

and quantifying the total number of true positives (TP), false positives (FP), true negatives

(TN), and false negatives (FP). In this case, a true positive pertains to correctly labeling a case

as “Clogged”. These metrics where chosen due to their ability to quantify overall classifier

performance (accuracy), while also testing for its ability to correctly predict positive clogging

labels (precision + ROC). Furthermore, we implemented a grid-search algorithm in order

to optimize our choice of model hyperparameters and thus improve the predictive power of

each type of classifier. Table 8.1 shows the performance metrics of each classifier as a result

of average precision grid-search optimization.

Table 8.1: Clogging prediction performance of the chosen ML classifiers. The highlighted sections represent the classi‐
fiers with the best performance.

The results in Table 8.1 are very encouraging, showing that the best two classifiers, Extra

Trees and the Multi-Layer Perceptron (MLP), reliably achieve a classifying precision of 0.94

and an accuracy of 0.96, meaning their false positive/negative rates are practically indistin-

guishable. Further analysis into the misclassified samples show that all of them are partially-

clogged samples that lie within the classification decision boundary shown in Figure 8.5B.

Please refer to Section 8.6 for a description of the optimized models.
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8.5.4 Classification Feature Analysis

Although the testing metrics of our models are relatively high, it might not be practical for a

potential user to have to obtain all 11 training variables for every systemof interest that he/she

wishes to test. It might be more efficient to reduce a model’s accuracy in favor of reducing

its complexity and number of features. As such, we now aim to identify the most predictive

features of the two most succesful models identified above.

To do so, we implemented a permutation feature importance algorithm, where we quanti-

fied the decrease in the models’ precision as a result of shuffling the values of a single feature.

This effectively disassociates the feature values from each sample’s labels. The relative mag-

nitude of the drop in the model’s precision is proportional to the relative importance of the

shuffled feature. This drop is then normalized with respect to all other shuffled features, and

a feature importance ranking is created. In our case, we chose to shuffle andmeasure the score

effect of each feature 50 times before continuing on to the next one.

Table 8.2 shows the top 6 features for our optimized Extra Trees and MLP classifiers.

Not surprisingly, both cases have the ratio between particle diameter and pore size (d/D) as

their top feature, followed by the standardized particle flux (Fnd) and the ratio between the

particle diameter and the geometric thickness (d/T ). These are then followed by the non-

dimensionalized attractive forces and the fluid viscosity. What is surprising however, is the

relatively small predictive power that d/D has, specially in the Extra Trees classifier, where

a model trained and tested with only said feature cannot predict clogging any better than a

coin flip. The addition of the next two features increases prediction accuracy to about 0.88

for both classifiers, meaning that the bulk of the clogging cases can be explained/predicted by

just 2 complementaryphysical processes: particle size exclusion andparticle flux. The remain-
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Table 8.2: Tabulated relative feature importance for the top 6 classifier features. The rightmost column identifies the
accuracy of a model trained and tested exclusively with the top “n” features.

ing cases rely onmore complex physics, where it is important to consider particle-particle-wall

attractions and viscous flow-particle couplings.

Porosity, pore size and grain heterogeneity, and the normalized fluid velocity do not seem

to have as much as an influence on clogging. This might be explained by two different fac-

tors: 1)We did not probe the sections of the 11-dimensional parameter space for which these

features become significant. 2) These features really do not affect clogging in a significant

way. Since fluid viscosity (i.e. drag) did appear to have a quantifiable influence on clogging

mechanics, we also believe that fluid velocity should play a part as well. For this reason we are

inclined to believe the first explanation is more likely, which is why this will be the first point

to be addressed in our future work.
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8.5.5 Training and Identifying Best Regressors

Training and testing ML regressors followed the same procedure outlined in Section 8.5.3.

The only difference was the fact that we are now aiming to predict the CN associated with

each sample, as opposed to its discrete label. Given that thedegree of clogging is a non-discrete

latent variable, it can be argued that using regressors to predict a CNmight actually be more

useful than binary classification. However, it is important to consider that the CN is an ab-

stractmetric; it is not obvious how this number’smagnitude reflects actual physical processes.

For this reasonwemake no value-judgement as to which approachmight bemore useful and

instead present the results of both types of predictors.

The results of our training, testing, and optimization procedure are shown in Table 8.3,

where we evaluate regressor performance by quantifying the R2 and Mean Absolute Error

(MAE) obtained from plotting a “predicted CN” vs “actual CN” curve (Figure 8.6).

Table 8.3: Clogging prediction performance of the chosen ML regressors. The highlighted section represents the regres‐
sor with the best performance.

Table 8.3 clearly shows that decision tree-basedMLmodels are, once again, the best predic-

tors for clogging mechanisms in porous media, closely followed by neural networks (MLPs).

A description of the best optimized model (Random Forest) can be found in Section 8.6 .
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Figure 8.6: Optimized Random Forest regression results.

8.5.6 Regression Feature Analysis

Just as we did for classifiers, we now turn to evaluate feature importance for our best regres-

sion algorithm (Random Forest) through a permutation feature importance algorithm. The

results shown in Table 8.4 are surprising, especially when compared to the ones presented

in Section 8.5.4. The top two features follow the same pattern we saw before, where d/D

and Fnd are once again the most significant features. However, this time, the ratio between

particle size and grain size (d/G) takes the third spot, followed by the particle-wall attraction

(PWnd), the particle-geometric thickness ratio (d/T ), and the porosity (ϕ). The previously-

unseen correlation between d/Gmight be explained by the fact thatwe used the symmetry of

the particle velocity distribution to construct the CN. Larger grains/obstacles produce larger

deviations in the particles’ velocity than their smaller counterparts, effectively changing the

CN without actually signifying the presence of clogging in the porous medium. A similar
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thing can be said about the effect of porosity on the CN, where less porous systems may

exhibit more velocity fluctuations than more porous ones.

Table 8.4: Tabulated relative feature importance for the top 6 regression features. The rightmost column identifies the
score metrics of the model if it is trained and tested exclusively with the top “n” features.

This analysis then begs the question of whether the importance of d/G and ϕ is actu-

ally predictive of clogging mechanisms or just an artifact of our simulation characterization

procedure. We believe that the answer is the later, as the marginal increase in the prediction

accuracy of these two feature seen in Table 8.5.4 is very small compared to their counterparts

(about 0.01 each). Furthermore, if we train and test our model without d/G and ϕ we only

reduce the overall R2 score by 0.02 (R2 = 0.90), while also replicating the original feature

rankings obtained by the classifiers. This implies that even though d/G and ϕ can be seen as

significant by our permutation feature ranking algorithm, most of their effects on the CN

can be captured by other features.

8.6 Conclusions

In this chapter, we combineddirect numerical simulationswithmachine learning approaches

to predict clogging in heterogeneous porous media. In order to obtain the necessary data for
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training said algorithms we developed a computational workflow designed to simulate parti-

cle flow through randomly-generated porousmedia over thousands of different experimental

and parametric conditions. One particular challenge that arose was the fact that clogging is

a continuous process, not a discrete one. For this reason, we also developed the concept of

a “Clogging Number” in order to properly characterize the level of clogging in our com-

putational simulations. Furthermore, in order to standardize our results we developed 11

non-dimensional training features that can be measured a-priori from any system involving

the flow of solid particles through a static obstacle field.

After training, testing, and optimizing several classifiers and regressors we concluded that

the best performing classifier was a Multi-Layer Perceptron with a logistic activation func-

tion, 175 hidden layers and an L2 regularization term of 0.05. This neural network was able

to achieve 0.96 and 0.94 labeling accuracy and precision, respectively. In turn, the best re-

gressor was a Random Forest regressor with 100 trees, a Mean Squared Error split criteria,

minimum sample split of 2, and nomaximum depth. This regressor achieved an R2 value of

0.92 when used to predict the samples’ CN.

Feature importance analysis of bothMachine Learning approaches showed that the most

predictive features for clogging in porous media are, in order of importance: the ratio be-

tween particle size and pore size, the flux of particles through the porous medium, particle-

particle/wall attraction forces, and fluid viscosity. They also showed that fluid velocity and

grain heterogeneity did not play a significant role in determining whether a system clogs or

not, a point thatwe attributed to the fact thatwedidnot probe the 11-dimensional parameter

space where these features are relevant.

The result of this investigation is a generalized clogging prediction algorithm that can ac-
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curately predict clogging in heterogeneous porous media, a tool which we hope can help

improve the design process of engineered porous systems. This is the first time that anyone

has probed such a large parametric phase space and/or applied Machine Learning to try and

describe this difficult problem, to the best of our knowledge. However, additional work

would be required the evaluate the ability of our models to predict clogging in most physical

systems. To do so we would need to fine-tune our clogging characterization algorithm and

expand our parameter space into different length scales, different particle shapes, different

grain geometries, and a larger range of fluid velocities and simulation times. Lastly, and ar-

guably the most important step, we would need to use actual experimental data to test (or

maybe even train) these models. We hope that this investigation spurns further work into

integratingMachine Learning approaches with numerical simulations in order to probe and

characterize stochastic physical phenomena.
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In science one tries to tell people, in suchawayas to be under-

stood by everyone, something that no one ever knew before.

But in poetry, it’s the exact opposite.

Paul Dirac

9
Conclusions

In this dissertation, we derived, implemented, benchmarked, and showcased a novel

CFD approach for simulation of multiscale multiphase flow within and around deformable

porous media. This micro-continuum modeling framework is based on elementary physics

andwas rigorously derived inChapter 2 through themethodof volume averaging and asymp-
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toticmatching. The result is a set of partial differential equations that approximate themulti-

phase Volume of Fluid equations in solid-free regions andmultiphase Biot Theory in porous

regions. These equations are valid in every simulated grid cell within a multiphase porous

system, regardless of content, which obviates the need to define different meshes, domains,

or complex boundary conditions within the simulation. The solver’s numeric and algorith-

mic development were presented in Chapter 3. The equations were implemented into hy-

bridPorousInterFoam and hybridBiotInterFoam, two open-source packages accessible here

for free to any interested party.

Throughout this thesis we show that the Multiphase DBB model can be readily used to

model a large variety of systems, from multiphase flow in static porous media, to elastic sys-

tems under compression, to viscosity- or capillarity-dominated fracturing systems, all theway

up to multiscale wave propagation in poroelastic coastal barriers (Chapters 4 to 7). In par-

ticular, we used this model to investigate and obtain parametric relationships for: A) the

permeability-clay content relationship in sedimentary rocks (Chapter 4), andB) the crossover

between fluid drainage and fracturing as a function of wettability, solid deformability, and

hydrodynamics (Chapter 7).

We note, however, that the solver presented here cannot be liberally applied to any porous

system, as it comes with the following inherent limitations. First, closure of the model’s

system of equations requires appropriate constitutive and parametric relations that describe

fluid pressure, permeability, capillarity, and rheologywithin volume averaged porous regions.

Therefore, the assumptions present in each of these models should be carefully considered.

Second, volume averaging imposes important length scale restrictions in order to conform

to the scale separation hypothesis: the pore sizes within the averaging volume must be sub-
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stantially smaller than the chosen REV, and the REVmust be substantially smaller than the

macroscopic length scale. Third, as implemented here, the multiphase DBB framework only

represents continuum-level elastic or plastic solid mechanics that can be described from an

Eulerian frame of reference. As such, it cannot be used tomodel large elastic deformations or

phenomena originating from sub-REV heterogeneities such as fluidization or granular me-

chanics (Meng et al., 2020), except insofar as they are captured in an averaged manner at the

REV scale. Fourth, the use of the CSF as a representation of capillary forces within solid-

free regions enforces mass conservation, but it creates a diffuse fluid-fluid interface that may

generate spurious and parasitic currents.

Finally, although the modeling framework developed here opens up significant new pos-

sibilities in the simulation of coupled fluid-solid mechanics, it also creates a need for the de-

velopment of constitutive relations describing the coupling between multiphase flow and

poromechanics. Of particular importance is the formulation of saturation and deformation-

dependent solid rheological models (both plastic and elastic), as well as the rigorous deriva-

tion of the interfacial condition between solid-free and deformable porous regions. In this

studyweproposed a suitable approximation for said boundary conditionbased onour single-

field formulation, the implementation of a wettability boundary condition, and the previous

work done byNeale&Nader (1974) andZampogna et al. (2019). However, the accuracy and

validity of such an approximation is still an open question, one that is at the frontier of our

modeling and characterization capabilities (Qin et al., 2020). The derivation and implemen-

tation of said boundary condition, alongwith the addition of erosion and chemical reactions

into this modeling framework, will be the focus of subsequent investigations.

We hope that the results developed of this thesis will inspiremorework in this direction, as

168



suitable and accurate CFDmodels will be key pieces in our path to meet the world’s steadily

increasing water and energy demand.
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A
Relative Permeability and Capillary

Pressure Models

A.1 Relative PermeabilityModels

The two relative permeability models used in this paper and implemented in the accompa-

nying code depend on the definition of an effective saturation in order to account for the
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presence of irreducible saturations within a porous medium,

αw,eff =
αw − αw,irr

1− αw,irr − αw,irr

Here, αw,eff is the wetting fluid’s effective saturation, which is the wetting fluid’s saturation

normalized by each fluid’s irreducible saturation αi,irr. The Brooks & Corey (1964) model

relates each phase’s relative permeability to saturation through the following expressions:

kr,n = (1− αw,eff )
m

kr,w = (αw,eff )
m

wherem is a non-dimensional coefficient that controls how sensitive the relative permeability

is with respect to saturation. The vanGenuchten (1980)model calculates relative permeabil-

ities in the following way:

kr,n = (1− αw,eff )
1
2

(
(1− αw,eff )

1
m

)2m

kr,w = (αw,eff )
1
2

(
1−

(
1− (αw,eff )

1
m

)m)2
In this case, m controls how wetting (or non-wetting) the porous medium is to a given

wetting (or non-wetting) fluid. High values ofm indicate high relative permeabilities for the

non-wetting fluid, while low values ofm indicate very low relative permeabilities for the same

fluid.
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A.2 Capillary PressureModels

The implemented capillary pressure models also depend on the definition of an effective

wetting-fluid saturation αw,pc,

αw,pc =
αw − αpc,irr

αpc,max − αpc,irr

Here, αpc,max is the maximum saturation of the wetting fluid and αpc,irr is its irreducible

saturation. The Brooks &Corey (1964) model uses the following expression to calculate the

capillary pressures within a porous medium:

pc = pc,0(αw,pc)
−β

where pc,0 is the entry capillary pressure, and β is a parameter depending on the pore size

distribution. Conversely, the van Genuchten (1980) model calculates the capillary pressure

with the following relation:

pc = pc,0

(
(αw,pc)

− 1
m − 1

)1−m

172



B
Solid RheologyModels

B.1 Hershel-Bulkley Plasticity

ABinghamplastic is amaterial that deforms only once it is under a sufficiently high stress. Af-

ter this yield stress is reached, it will deform viscously and irreversibly. The Herschel-Bulkley

rheological model combines the properties of a Bingham plastic with a power-law viscosity

model, such that said plastic can be shear thinning or shear thickening during deformation.
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In OpenFOAM® this model is implemented as follows:

σ = µeff
s

(
∇U s + (∇U s)

T − 2

3
∇ · (U s I)

)
where µeff

s is the effective solid plastic viscosity, which is then modeled through a power law

expression:

µeff
s = min

(
µ0
s ,

τ

η
+ µsη

n−1

)
where µ0

s is the limiting viscosity (set to a very large value), τ is the yield stress, µs is the

viscosity of the solid once the yield stress is overcome, n is the flow index (n = 1 for constant

viscosity), and η is the shear rate.

B.2 Quemada RheologyModel

TheQuemada rheologymodel (Quemada, 1977; Spearman, 2017) is a simple model that ac-

counts for the fact that the average yield stress and effective viscosity of a plastic are functions

of its solid fraction. These two quantities are large at high solid fractions and small at low

solid fractions, as described by the following equations:

τ = τ0

(
(ϕs/ϕ

max
s )

(1− ϕs/ϕmax
s )

)D

µs =
µ0(

1− ϕs

ϕmax
s

)2
here, ϕmax

s is the maximum solid fraction possible (perfect incompressible packing), τ0 is
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the yield stress at ϕs = ϕmax
s /2 , µ0 is the viscosity of the fluid where the solid would be

suspended at low solid fractions (high fluid fractions), andD is a scaling parameter based on

the solid’s fractal dimension.

B.3 Linear Elasticity

A linear elastic solid assumes that a solid exhibits very small reversible deformations under

stress. Linear elasticity is described by the following relation:

σ = µs∇us + µs (∇us)
T + λstr (∇us) I

where us is the solid displacement vector (not to be confused with solid velocity Us =
∂us

∂t
),

andµs andλs are theLamécoefficients. The implementationof linear elasticity inOpenFOAM®

follows the procedure outlined in Jasak &Weller (2000).

175



C
Fracturing Instabilities

The following figures demonstrate how different fracturing patterns can result from differ-

ent solid fraction initializations. Here we set up two sets of four identical experiments. In

the first set, the only difference between cases is the value of the standard deviation of their

respective normally-distributed solid fraction field (all centered at ϕs = 0.64). These exper-

iments follow the same simulation setup used for the fracturing case shown in Figure 6.4K.
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Figure C.1: Effects of the solid fraction field’s standard deviation on fracturing.

In the second set of experiments we simulated the base case presented in Figure 6.9 with

different solid fraction profiles picked from the same normal distribution ϕs = 0.6 ± 0.05.

Figure C.2: Effects of different solid fraction field initializations on fracturing.

Figures C.1 and C.2 clearly show that the shape of the created fractures is dependent on

the initial solid fraction distribution.
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D
Additional Derivation Steps

D.1 Skipped Steps in the Derivation of the Fluid Continuity Equation

We start with a basic continuity equation for fluid phase i,

∂ρi
∂t

+∇ · (ρiU i) = 0 (D.1)
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where ρi and U i are the fluid’s density and velocity, respectively. Applying the averaging

operators for a volume containing a solid phase (s) and an additional fluid phase (j) we get

∂ρi
∂t

+∇ · (ρiU i) = 0 (D.2)

Expanding the averaged functions

∂ρi
∂t

− 1

V

∫
Ai,s

ρiU s · ni,sdA− 1

V

∫
Ai,j

ρiU i · ni,jdA

+∇ ·
(
ρiU i

)
+

1

V

∫
Ai,s

ρiU i · ni,sdA+
1

V

∫
Ai,j

ρiU i · ni,jdA = 0 (D.3)

Canceling like terms we then obtain

∂ρi
∂t

+∇ ·
(
ρiU i

)
+

1

V

∫
Ai,s

ρi(U i −U s) · ni,sdA = 0 (D.4)

Now, given that thefluid and solid velocities are equal at thefluid-solid interface (U i = U s

atAi,s) we can cancel the terms within the integral. This results in Equation 2.17 presented

in the main text.

∂ρi
∂t

+∇ ·
(
ρiU i

)
= 0 (D.5)
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D.2 Derivation of the Single-Field Viscous Stress Tensor

Following themain derivation in Section 2.5, the single-field viscous stress tensor should have

the following form:

S = αwµw

(
∇U

w

w +
(
∇U

w

w

) T
)
+ αnµn

(
∇U

n

n +
(
∇U

n

n

)T) (D.6)

Additionally, the definition of the single field and relative velocities (see Sections 2.3 and

2.4) state that

U
w

w = ϕ−1
f U f + αnU r (D.7)

U
n

n = ϕ−1
f U f − αwU r (D.8)

Taking the gradient within the free fluid (where the viscous stress tensor is dominant), we

get,

∇U
w

w = ∇U f + αn∇U r −U r · ∇αw (D.9)

∇U
n

n = ∇U f − αw∇U r −U r · ∇αw (D.10)

Inserting these definitions into the first equation and expanding we then obtain the fol-

lowing equation.
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S = (αwµw + αnµn)
(
∇U f + (∇U f )

T
)
+ αwαn (µw − µn) (∇U r+

(∇U r)
T )− (αwµw + αnµn)U r ·

(
∇αw + (∇αw)

T
)

(D.11)

We can further simplify this expression by defining the single-field fluid viscosity µf =

αwµw + αnµn. The result is a complete expression for the single-field viscous stress tensor.

S = µf

(
∇U f + (∇U f )

T
)

+ αwαn (µw − µn)
(
∇U r + (∇U r)

T
)
− µfU r ·

(
∇αw + (∇αw)

T
)

(D.12)

If U r ≪ U f , as argued in Fleckenstein & Bothe (2015), this expression reduces to the

equation presented in Section 2.5.

S ≈ µf

(
∇U f + (∇U f )

T
)

(D.13)

D.3 Derivation of the Single-FieldMaterial Derivative

We start with the standard material derivative for a given fluid phase i.

∂ρiU i

∂t
+∇ · (ρiU iU i) (D.14)

We then apply the averaging operators for a volume that contains an additional fluid phase
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and a solid phase.
∂ρiU i

∂t
+∇ · (ρiU iU i) (D.15)

Expanding the terms according to the averaging theorems, we obtain:

∂ρiU i

∂t
− 1

V

∫
Ai,s

ρiU iU i,s · ni,sdA− 1

V

∫
Ai,j

ρiU iU i,j · ni,jdA

+∇ ·
(
ρiU iU i

)
+

1

V

∫
Ai,s

ρiU iU i · ni,sdA +
1

V

∫
Ai,j

ρiU iU i · ni,jdA (D.16)

Given that the velocities of two immiscible fluids are equal to each other at the fluid-fluid

interface (i.e. U i = U j = U i,j atAi,j) and that the fluid and solid velocities are equal at the

fluid-solid interface (i.e. U i = U s = U i,s at Ai,s), we can obtain the following equation

(Higuera, 2015):

∂ρiU i

∂t
+∇ ·

(
ρiU iU i

)
= 0 (D.17)

We can further simplify the convective term by separating the fluid’s velocity into its in-

trinsic average and deviation termsU i = U
i

i + Ũ i (Whitaker, 2013), which results in

∇ ·
(
ρiU iU i

)
= ∇ ·

(
ϕfαiρiU iU i

)
= ∇ ·

(
ϕfαiρiU

i

iU
i

i

)
+∇ ·

(
ρiŨ iŨ i

)
(D.18)

For lowRe number simulations, we can neglect the deviation term to obtain the averaged
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material derivative for a single fluid phase.

∂ρiϕfαiU
i

i

∂t
+∇ ·

(
ϕfαiρiU

i

iU
i

i

)
(D.19)

To obtain the equivalent single-field expressionwe add thematerial derivatives of awetting

(w) and non-wetting (n) fluid,

∂ϕf (ρwαwU
w

w + ρnαnU
n

n)

∂t
+∇ ·

(
ϕf

(
αwρwU

w

wU
w

w + αnρnU
n

nU
n

n

))
(D.20)

From the definitions of the single-field and relative velocities we can write the following

relations:

U
w

w = ϕ−1
f U f + αnU r (D.21)

U
n

n = ϕ−1
f U f − αwU r (D.22)

Based on these definitions, the terms within the time derivative and within the divergence

operator in Eqn. D.20 can be expressed as

ϕf (ρwαwU
w

w + ρnαnU
n

n) = (αwρw + αnρn)U f + ϕfαwαnU r(ρw − ρn) (D.23)
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and,

ϕf

(
αwρwU

w

wU
w

w + αnρnU
n

nU
n

n

)
=

ϕf (αwρw + αnρn)
(
ϕ−2
f U fU f +U rU r

)
+ 2ϕ−1

f αwαnU fU r(ρw − ρn) (D.24)

To simplify things, we now define the single-field density ρf = αwρw+αnρn, and the vis-

cosity difference∆ρ = ρw−ρn. Combining the previous equations we obtain the complete

averaged single-field expression for the material derivative

∂ρfU f

∂t
+

∂ϕfαwαn∆ρU r

∂t
+∇ ·

(
ρf
ϕf

U fU f

)
+

∇ · (ϕfρfU rU r) +∇ · (2αwαn∆ρU fU r) (D.25)

Finally, ifU r ≪ U f , as argued in Fleckenstein & Bothe (2015), this expression reduces

to the expression used in the derivation of Equation 2.40.

∂ρfU f

∂t
+∇ ·

(
ρf
ϕf

U fU f

)
(D.26)

D.4 Recovery of Biot Theory from the Fluid and Solid Momentum Equa-

tions

We start by adding together the final fluid and solid momentum equations (Eqns. 2.85 and

2.87) under the assumption of low Reynolds numbers and low permeability. This is analo-
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gous to the steps used to obtain Eqn. 2.79 in Section 2.10.

−∇ · σ = ϕs∇ · τ s − ϕf∇p+ (ϕsρs + ϕfρf ) g + F c,2 (D.27)

Now, assuming uniform confining pressure and no swelling pressure (i.e∇·τ s = − ∇p)

we obtain:

−∇ · σ = −ϕs∇p− ϕf∇p+ (ϕsρs + ϕfρf ) g + F c,2 (D.28)

We can then set ρ∗ = (ϕsρs + ϕfρf) and input the definition of the capillary force term

(Eqn. 2.90), such that

−∇ · σ = −∇p+ ρ∗g − pc∇αw (D.29)

The resulting expression is themomentum conservation equation used inmultiphase Biot

Theory (Jha0& Juanes, 2014; Kim et al., 2013). In said papers, the corresponding fluidmass

conservation equation is

∂m

∂t
+∇ ·U f = 0 (D.30)

where m is the mass of fluid per control volume. The time derivative is often expressed in

terms of the fluid pressure and volumetric strain (ϵ) by applying the following a pressure-

strain relation (Coussy, 2010; Kim et al., 2011):

1

ρf
(m−m0) = bϵ+

1

M
(p− p0) (D.31)

185



Therefore, the continuity equation becomes,

ρf

(
1

M

∂p

∂t
+ b

∂ϵ

∂t

)
+∇ ·U f = 0 (D.32)

whereM and b are the Biot modulus and coefficient, respectively. In our modelling frame-

work, however, we note that the initial continuity equation is equal to the averaged fluid

continuity equation presented in the main text by considering thatm = ϕfρf .

∂ϕfρf
∂t

+∇ ·U f = 0 (D.33)

D.5 Integral Geometric Relation for Vectors

The following geometric relation holds for vector values within the averaging integrals; note

its similarity to the geometric relation for scalars shown in the main text (Whitaker, 1986a)

1

V

∫
Ai,s

I · nf,sdA = −I · ∇ϕf (D.34)
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E
Semi-Analytic Solution for the Seismic

Stimulation of a Poroelastic Core

Here we present the analytical solution used to describe the oscillating elastic system in Sec-

tion 6.1.2. Given a Biot coefficient of unity and incompressible fluids, the fractional change

in an oscillating poroelastic core’s fluid contentΩ as a function of time t is given by (Lo et al.,
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2012):

Ω (t) = −a1υ + a2αwpa + 0.5 (a2p0sin(ωt)− a2αwpa) +
∞∑
n=1

A (E.1)

A = (nπ)−22cos (nπ) a2p0

(
sin (ωt) +

ω2
nsin (ωt+ δn)

((ω2 − ω2
n)

2
+D2ω2)

0.5

)
(1− cos (nπ) )

(E.2)

where υ is the uniaxial confining pressure, pa is the fixed pressure at the left boundary, p0 is

the amplitude of the oscillating pressure at the right boundary, and ω = 2πf is the angular

frequency of the pressure variation. The summation terms ωn and sin (δn) are defined as

ωn =

(
Cnπ

Length

)2

(E.3)

sin (δn) =
Dω

((ω2 − ω2
n)

2
+D2ω2)

0.5 (E.4)

cos (δn) =
ω2 − ω2

n

((ω2 − ω2
n)

2
+D2ω2)

0.5 (E.5)

Furthermore, the dissipation constantD, the wave speedC , and the compressibility con-

stants a1 and a2 are defined as follows

D =
1

k0

1

T
ϕf

(
ρwMw

αw
+ ρnMn

αn

)
− (ρwMw + ρnMn)

(E.6)
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C2 =

(
Kb +

4

3
G

)
M

T
ϕf

(
ρwMw

αw
+ ρnMn

αn

)
− (ρwMw + ρnMn)

(E.7)

a1 = (3Kb)
−1 (E.8)

a2 = K−1
b (E.9)

where T = 0.5
(
1 + ϕ−1

f

)
is the tortuosity,Kb is the bulk modulus of the solid matrix,G is

the shear modulus of the solid matrix, and the rest of the variables are defined as in the main

manuscript. The infinite sum in Eqn. E.1 was calculated through a python script, where it

was truncated at the point where the last sum term represented 0.01% of the previous term.
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